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Today’s lecture

� Simple Linear Regression

� Least Squares Estimation
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Regression modeling

� Want to use predictors to learn about the outcome
distribution, particularly conditional expected value.

� Formulate the problem parametrically

E(y | x) = f (x;β) = β0 + β1x1 + β2x2 + . . .

� (Note that other useful quantities, like covariance and
correlation, tell you about the joint distribution of y and x)
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Covariance and Correlation
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Simple linear regression

� Linear models are a special case of all regression models;
simple linear regression is the simplest place to start

� Only one predictor:

E(y | x) = f (x;β) = β0 + β1x1

� Useful to note that x0 = 1 (implicit definition)

� Somehow, estimate β0, β1 using observed data.
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Coefficient interpretation
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Coefficient interpretation
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Look at the data

� Plot the data (using ggplot ...)

� Do the data look like the assumed model?

� Should you be concerned about outliers?

� Define what you expect to see before fitting any model.
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Look at the data
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Look at the data
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Look at the data
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Look at the data
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Least squares estimation

� Observe data (yi, xi) for subjects 1, . . . ,n. Want to estimate
β0, β1 in the model

yi = β0 + β1xi + εi; εi
iid∼ (0, σ2)

� Note the assumptions on the variance:
� E(ε | x) = E(ε) = 0
� Constant variance
� Independence
� [Normally distributed is not needed for least squares, but is

needed for inference]
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Least squares estimation

� Recall that for a single sample yi, i ∈ 1, . . . ,n, the sample
mean µ̂y minimizes the sum of squared deviations.
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Least squares estimation

� Find β̂0.
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Least squares estimation

� Now find β̂1.
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Note about correlation

ρ =
cov(x, y)√

var(x)var(y)
; β1 =

cov(x, y)

var(x)
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R does exactly what we now expect

> linmod = lm(y˜x, data = data)
> summary(linmod)

Call:
lm(formula = y ˜ x, data = data)

Residuals:
Min 1Q Median 3Q Max

-1.5202 -0.5050 -0.2297 0.5753 1.8534

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.08743 0.22958 9.092 7.53e-10 ***
x 0.61396 0.05415 11.338 5.61e-12 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.8084 on 28 degrees of freedom
Multiple R-squared: 0.8211,Adjusted R-squared: 0.8148
F-statistic: 128.6 on 1 and 28 DF, p-value: 5.612e-12
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R does exactly what we now expect

> tidy(linmod)
term estimate std.error statistic p.value

1 (Intercept) 2.0874344 0.22958105 9.092364 7.529711e-10
2 x 0.6139621 0.05415004 11.338166 5.611585e-12
> glance(linmod)

r.squared adj.r.squared sigma statistic p.value df logLik ...
1 0.821148 0.8147604 0.8084399 128.554 5.611585e-12 2 -35.1538 ...
>
>
> beta1 = with(data, sum((x - mean(x))*(y - mean(y))) / sum((x - mean(x))ˆ2))
> beta0 = with(data, mean(y) - beta1*mean(x))
> c(beta0, beta1)
[1] 2.0874344 0.6139621
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Note on interpretation of β0

Recall β0 = E(y|x = 0)

� This often makes no sense in context

� “Centering” x can be useful: x∗ = x− x̄

� Center by mean, median, minimum, etc

� Effect of centering on slope:
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Note on interpretation of β0, β1

� The interpretations are sensitive to the scale of the outcome
and predictors (in reasonable ways)

� You can’t get a better model fit by rescaling variables
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R example

> data = mutate(data, x.cen = x - mean(x), x2 = x*2)
> linmod.cen = lm(y ˜ x.cen, data = data)
> tidy(linmod.cen)

term estimate std.error statistic p.value
1 (Intercept) 4.0811993 0.14760027 27.65035 7.172437e-22
2 x.cen 0.6139621 0.05415004 11.33817 5.611585e-12
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R example

> linmod.x2 = lm(y ˜ x2, data = data)
> tidy(linmod.x2)

term estimate std.error statistic p.value
1 (Intercept) 2.0874344 0.22958105 9.092364 7.529711e-10
2 x2 0.3069811 0.02707502 11.338166 5.611585e-12
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Least squares notes and foreshadowing

� Didn’t have to choose to minimize squares – could
minimize absolute value, for instance.

� Least squares estimates turn out to be a “good idea” –
unbiased, BLUE.

� Later we’ll see about maximum likelihood as well.
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Geometric interpretation of least squares

Least squares minimizes the sum of squared vertical distances
between observed and estimated y’s:

min
β0, β1

I∑
i=1

(yi − (β0 + β1xi))
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Least squares in regression generally

Broadly speaking, in regression we often are concerned with
minimizing

E[f (x) + ε− f̂ (x)]2

by choosing a “good” f̂ . For a given f̂ this decomposes into

E[f (x)− f̂ (x)]2 + Var(ε)

� Some variance isn’t explainable (we just don’t know how
much)

� Focus on getting the left component right

� Minimizing squared error for unseen data is the real goal
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Today’s big ideas

� Simple linear regression – model and interpretation

� Least squares estimation

� Suggested reading: Faraway Ch 1, 2.1; ISLR 3.1
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