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Today’s lecture

m Simple Linear Regression

m Least Squares Estimation



Regression modeling

s Want to use predictors to learn about the outcome
distribution, particularly conditional expected value.

m Formulate the problem parametrically

E(y|x)=f(x;8) = Bo+ Bix1 + foxa + ...

m (Note that other useful quantities, like covariance and
correlation, tell you about the joint distribution of y and x)



Covariance and Correlation



Simple linear regression

m Linear models are a special case of all regression models;
simple linear regression is the simplest place to start

m Only one predictor:

E(y | x) =f(x; 8) = Bo + fix1

m Useful to note that xo = 1 (implicit definition)

m Somehow, estimate Sy, 51 using observed data.



Coefficient interpretation



Coefficient interpretation
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Look at the data

Plot the data (using ggplot ...)

m Do the data look like the assumed model?

Should you be concerned about outliers?

» Define what you expect to see before fitting any model.



Look at the data




Look at the data




Look at the data




Look at the data
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Least squares estimation

m Observe data (y;, x;) for subjects 1, ..., n. Want to estimate
5o, £1 in the model

»
yi = Bo + Bix; +ei; € ~ (0,07)

» Note the assumptions on the variance:

E(e|x)=E(e) =0

m Constant variance

m Independence

m [Normally distributed is not needed for least squares, but is
needed for inference]
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Least squares estimation

m Recall that for a single sample y;,i € 1, ..., n, the sample
mean /i, minimizes the sum of squared deviations.



Least squares estimation

= Find 3.



Least squares estimation

= Now find 3.



Note about correlation
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R does exactly what we now expect

> linmod = lm(y~x, data = data)
> summary (linmod)

Call:
Im(formula = y 7 x, data = data)

Residuals:
Min 10 Median 30 Max
-1.5202 -0.5050 -0.2297 0.5753 1.8534

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 2.08743 0.22958 9.092 7.53e-10 xx*
x 0.61396 0.05415 11.338 5.6le-12 *x

Signif. codes: 0 %*x 0.001 % 0.01 * 0.05 . 0.1 1

Residual standard error: 0.8084 on 28 degrees of freedom
Multiple R-squared: 0.8211,Adjusted R-squared: 0.8148
F-statistic: 128.6 on 1 and 28 DF, p-value: 5.612e-12



R does exactly what we now expect

> tidy (linmod)

term estimate std.error statistic p.value

1 (Intercept) 2.0874344 0.22958105 9.092364 7.529711le-10
2 x 0.6139621 0.05415004 11.338166 5.611585e-12
> glance (linmod)

r.squared adj.r.squared sigma statistic p.value df logLik ..
1 0.821148 0.8147604 0.8084399 128.554 5.611585e-12 2 -35.1538 ...
>
>
> betal = with(data, sum((x — mean(x))+*(y — mean(y))) / sum((x - mean(x)) 2))
> beta0 = with(data, mean(y) - betalxmean(x))
> c(betal, betal)
[

1] 2.0874344 0.6139621



Note on interpretation of

Recall 5y = E(y|x = 0)
m This often makes no sense in context
m “Centering” x can be useful: x* = x — X
m Center by mean, median, minimum, etc

m Effect of centering on slope:



Note on interpretation of Sy,

» The interpretations are sensitive to the scale of the outcome
and predictors (in reasonable ways)

m You can’t get a better model fit by rescaling variables



R example

> data = mutate(data, x.cen = x — mean(x), x2 = x*x2)
> linmod.cen = 1lm(y ~ x.cen, data = data)
> tidy (linmod.cen)

term estimate std.error statistic p.value
1 (Intercept) 4.0811993 0.14760027 27.65035 7.172437e-22
2 x.cen 0.6139621 0.05415004 11.33817 5.611585e-12



R example

> linmod.x2 = lm(y ~ x2, data = data)
> tidy (linmod.x2)

term estimate std.error statistic p.value
1 (Intercept) 2.0874344 0.22958105 9.092364 7.529711e-10
2 x2 0.3069811 0.02707502 11.338166 5.611585e-12



Least squares notes and foreshadowing

m Didn’t have to choose to minimize squares — could
minimize absolute value, for instance.

m Least squares estimates turn out to be a “good idea” —
unbiased, BLUE.

m Later we'll see about maximum likelihood as well.



Geometric interpretation of least squares

Least squares minimizes the sum of squared vertical distances
between observed and estimated y’s:
L
min
Bo,B1 Y (i — (Bo + Brx))?

i=1

5.0

0.0

u ; ;

25 of 27



Least squares in regression generally

Broadly speaking, in regression we often are concerned with
minimizing
Ef(x) + € = f(2)]?

by choosing a “good” f. For a given f this decomposes into

E[f(x) — f(x)]* + Var(e)

m Some variance isn’t explainable (we just don’t know how
much)

m Focus on getting the left component right

m Minimizing squared error for unseen data is the real goal
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Today’s big ideas

m Simple linear regression — model and interpretation

m Least squares estimation

m Suggested reading: Faraway Ch 1, 2.1; ISLR 3.1



