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Today’s lecture

� Simple Linear Regression Continued

� Multiple Regression Intro
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Simple linear regression model

� Observe data (yi, xi) for subjects 1, . . . ,n. Want to estimate
β0, β1 in the model

yi = β0 + β1xi + εi; εi
iid∼ (0, σ2)

� Note the assumptions on the variance:
� E(ε | x) = E(ε) = 0
� Constant variance
� Independence
� [Normally distributed is not needed for least squares, but is

nice for inference and needed for MLE]
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Some definitions / SLR products

� Fitted values: ŷi = β̂0 + β̂1xi

� Residuals / estimated errors: ε̂i = yi − ŷi

� Residual sum of squares:
∑n

i=1 ε̂i
2

� Residual variance: σ̂2 = RSS
n−2

� Degrees of freedom: n− 2

Notes: residual sample mean is zero; residuals are uncorrelated
with fitted values.
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R2

Looking for a measure of goodness of fit.

� RSS by itself doesn’t work so well:

n∑
i=1

(yi − ŷi)
2

� Coefficient of determination (R2) works better:

R2 = 1−
∑

(yi − ŷi)
2∑

(yi − ȳ)2
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R2

Some notes about R2

� Interpreted as proportion of outcome variance explained
by the model.

� Alternative form

R2 =

∑
(ŷi − ȳ)2∑
(yi − ȳ)2

� R2 is bounded: 0 ≤ R2 ≤ 1

� For simple linear regression only, R2 = ρ2
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ANOVA

Lots of sums of squares around.

� Regression sum of squares SSreg =
∑

(ŷi − ȳ)2

� Residual sum of squares SSres =
∑

(yi − ŷi)
2

� Total sum of squares SStot =
∑

(yi − ȳ)2

� All are related to sample variances

Analysis of variance (ANOVA) seeks to address goodness-of-fit
by looking at these sample variances.
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ANOVA

ANOVA is based on the fact that SStot = SSreg + SSres
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ANOVA

ANOVA is based on the fact that SStot = SSreg + SSres
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ANOVA and R2

� Both take advantage of sums of squares

� Both are defined for more complex models

� ANOVA can be used to derive a “global hypothesis test”
based on an F test
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R example

> linmod = lm(y ˜ x, datat = data)
> linmod

Call:
lm(formula = y ˜ x, data = data)

Coefficients:
(Intercept) x

2.087 0.614

> tidy(linmod)
term estimate std.error statistic p.value

1 (Intercept) 2.0874344 0.22958105 9.092364 7.529711e-10
2 x 0.6139621 0.05415004 11.338166 5.611585e-12
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R example

> summary(linmod)

Call:
lm(formula = y ˜ x, data = data)

Residuals:
Min 1Q Median 3Q Max

-1.5202 -0.5050 -0.2297 0.5753 1.8534

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.08743 0.22958 9.092 7.53e-10 ***
x 0.61396 0.05415 11.338 5.61e-12 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.8084 on 28 degrees of freedom
Multiple R-squared: 0.8211,Adjusted R-squared: 0.8148
F-statistic: 128.6 on 1 and 28 DF, p-value: 5.612e-12
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R example

> names(linmod)
[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model"
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R example

> linmod$residuals
1 2 3 4 5 6

1.2555987 -0.2398006 0.2933523 -0.2499462 -1.5201821 -0.5099489
...
> linmod$fitted.values

1 2 3 4 5 6
2.7754640 4.2675708 2.3901878 6.8676466 4.5362366 2.4181112

...
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R example

> names(summary(linmod))
[1] "call" "terms" "residuals" "coefficients"
[5] "aliased" "sigma" "df" "r.squared"
[9] "adj.r.squared" "fstatistic" "cov.unscaled"

>
> summary(linmod)$coef

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.0874344 0.22958105 9.092364 7.529711e-10
x 0.6139621 0.05415004 11.338166 5.611585e-12
>
> summary(linmod)$r.squared
[1] 0.821148
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R example

> anova(linmod)
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

x 1 86.744 86.744 107.59 4.266e-11 ***
Residuals 28 22.575 0.806
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
>
> 1 - 18.30 / (84.02 + 18.30)
[1] 0.8211493
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Properties of β̂0, β̂1

Population Sample

Sample StatisticPopulation 
 Parameter
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Properties of β̂0, β̂1

Estimates are unbiased:
E(β̂0) =

E(β̂1) =
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Properties of β̂0, β̂1

Variances of estimates:
Var(β̂0) =

Var(β̂1) =
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Properties of β̂0, β̂1

Note about the variance of β1:

� Denominator contains SSx =
∑

(xi − x̄)2

� To decrease variance of β1, increase variance of x
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Effect of data on β1
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Effect of data on β1
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Switching to multiple linear regression

� Observe data (yi, xi1, . . . , xip) for subjects 1, . . . ,n. Want to
estimate β0, β1, . . . , βp in the model

yi = β0 + β1xi1 + . . .+ β1xip + εi; εi
iid∼ (0, σ2)

� Assumptions (residuals have mean zero, constant
variance, are independent) are as in SLR

� Notation is cumbersome. To fix this, let
� xi = [1, xi1, . . . , xip]

� βT = [β0, β1, . . . , βp]

� Then yi = xiβ + εi
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Matrix notation

� Let

y =


y1
.
.
.

yn

 , X =


1 x11 . . . x1p

.

.

.
.
.
. xij

.

.

.
1 xn1 . . . xnp

 , β =


β0

.

.

.
βp

 , ε =


ε1
.
.
.
εn



� Then we can write the model in a more compact form:

yn×1 = Xn×(p+1)β(p+1)×1 + εn×1

� X is called the design matrix
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Matrix notation

y = Xβ + ε

� ε is a random vector rather than a random variable

� E(ε) = 0 and Var(ε) = σ2I

� Note that Var is potentially confusing; in the present
context it means the “variance-covariance matrix”
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Mean and Variance of a Random Vector

� Let yT = [y1, . . . , yn] be an n-component random vector.
Then its mean and variance are defined as

E(y)T = [E(y1), . . . ,E(yn)]

Var(y) = E
[
(y− Ey)(y− Ey)T

]
= E(yyT)− (Ey)(Ey)T

� Let y and z be an n-component and an m-component
random vector respectively. Then their covariance is an
n×m matrix defined by

Cov(y, z) = E
[
(y− Ey)(z− Ez)T]
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Basics on Random Vectors

Let A be a t× n non-random matrix and B be a p×m
non-random matrix. Then

E(Ay) = AE(y)

Var(Ay) = AVar(y)AT

Cov(Ay,Bz) = ACov(y, z)BT
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Today’s big ideas

� Simple linear regression definitions

� Properties of SLR least squares estimates

� Matrix notation for MLR

� Suggested reading: Faraway Ch 2.2 - 2.3; ISLR 3.1
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