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Today’s lecture

m Simple Linear Regression Continued

m Multiple Regression\[ntro
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Simple linear regression model

m Observe data (y;, x;) for subjects 1, ..., n. Want to estimate
@ﬁl in the model

iid
Yi = Bo + Bixi +€i; € ~ (0,02)%

m Note the assumptions on the variance:
2! E(e|x)=E(e) =0
m Constant variance ~/
m Independence ~”
m [Normally distributed is not needed for least squares, but is
nice for inference and needed for MLE]
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Some definitions / SLR products . oaA
a4 ‘

(52 éb/ é/

m Fitted values: ij; = Bo + lel-
m Residuals / estimated errors: € = y; — 1y
w Residual sum of squares: >, é*
/ » Residual variance: o2 = -2

m Degrees of freedom: n — 2

2Notes: residual sample mean is zero;|residuals are uncorrelated
with fitted Values?

30f27


Jeff Goldsmith


RZ

Looking for a measure of goodness of fit.
m RSS by itself doesn’t work so well:

> (i — i)
i=1

» Coefficient of determination (R?) works better:

=S 9P b
R2 Yi— Vi .
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Some notes about R?

m Interpreted as proportion of outcome variance explained
by the model.

m Alternative form

m R?2isbounded: 0 < R2< 1

» For simple linear regression only, R? = p?
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ANOVA

Lots of sums of squares around.

m Regression sum of squares SS,., = > (i — y)?
» Residual sum of squares SS.s = > (y; — ¥i)?

» Total sum of squares SS;t = > (y; — y)?> _—

m All are related to sample variances

We (ANOVA) seeks to address goodness-of-fit
by looking at these sample variances.
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ANOVA

ANOVA is based on the fact that SSyt = SSeq + SSpes

Hw 7
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ANOVA

7
ANOVA is based on the fact that 55;o; = SSeq + SSres
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ANOVA and R?

» Both take advantage of sums of squares
m Both are defined for more complex models

m ANOVA can be used to derive a “global hypothesis test”
based on an F test
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R example

A =

|

> linmod = 1lm( %, data@ = data)
> linmed

Call:

Im(formula = y ~ x, data = data)

Coefficients: é{
(Intercept) X
2.087 0.614

> é‘idy(linmod) & q} Vs v

term estimate d.error statistic
1 (Intercept) 2.0874344 0.22958
2 x 0.6139621 0.05

i[\

11.338166 5.
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R example

> summary (linmod)

Call:
1lm(formula = y ~ x, data = data)

Residuals:
Min 10 Median 30 Max
-1.5202 -0.5050 -0.2297 0.5753 1.8534

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 2.08743 0.22958 9.092 7.53e-10 xx*
b3 0.61396 0.05415 11.338 5.61le-12 xx*

Signif. codes: 0 x%* 0.001 xx 0.01 % 0.05

Residual standard error: 0.8084 on 28 degrees of freedom

ﬁ;ltiple R-squared; Adjusted_R-sguared: 0.8148

F-statistic: 128.6 on 1 and 28 DF, p-value: 5.612e-12
—_— —_— -_—
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R example

> names (linmod)
[1] "coefficients" "residuals"
[5] "fitted.values" "assign"
[9] "xlevels" "call"

"effects"
nart
"terms"

"rank"
"df.residual"
"model"
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R example

> linmodSresiduals
LLtnmodyr

1 2 3 4 5 6
1.2555987 -0.2398006 0.2933523 -0.2499462 -1.5201821 -0.5099489
1.2555 .2398 293
> linmodSfirted valuas

1 2 3 4 5 6

2.7754640 4.2675708 2.3901878 6.8676466 4.5362366 2.4181112
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R example

> names (summary (linmod))

[1] "call" "terms" "residuals" "coefficients"
[5] "aliased" "sigmal "dE" "r.squared"
[9] "adj.r.squared" "fstatisti Cov.unscaled"
> - 7
Estimate Std. Error t value Pr(>t])

(Intercept) 2.0874344 0.22958105 9.092364 7.529711e-10
X 0.6139621 0.05415004 11.338166 5.611585e-12
>
> summary (linmod) $r.squared
[1] 0.821148

-~
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R example

> anova (linmod)
anova |
Analysis of Variance Table

Response: y
Df Sum Sqg) Mean Sg F value Pr (>F)
P 1 86.744| 86.744 107.59 4.266e-11 xx*x,
f‘Residuals 28 22.575 0.806

Signif. codes: 0 x%xx 0.001 %% 0.01 * 0.05 . 0.1
>/ /

> 1 - 18.30 / (84.02_+ )

[1] 0.8211493

—_—
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Properties of Bo, 31

[S¢

éo/ él é;/ g’
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Properties of (o, 5 o 5 (rbd) o

‘:);: %&'{’?:X:*é;
Estimates are unbiased: E:lp 23
‘“4/
E(Bo) = ( 5- b, ><> et

= g 3\ E((;x)

z E.(Z,(PD"P-)‘B&-’) _ E\?.ix;)
EG%‘\* E ’»‘—k‘v‘ia E(i"\ -

E(él)* g 6.2»’} /;/\, -
?/N(Q‘/‘—JB

J
=5 ( 2(%.‘-;?)(3;,r\
Llni-%\"
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Properties of Bo, 51

Variances of estimates: | oYU ( ékb / /6\(> =0 ? ? ,Z
Var(By) = =1, X
i
~
A - Ny 8,
Var(h) = oo
A
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Properties of Bo, 31

Note about the variance of f;:
» Denominator contains SS, = > (x; — x)?

m To decrease variance of (3, increase variance of x



Effect of data on (5




Effect of data on (5,
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Switching to multiple linear regression

m Observe data (y;, xj1, . - -, xjy) for subjects 1,...,n. Want to
estimate [y, 31,. .., By in the model
iid 5
yi = fo+ frxi + ...+ Bixip + €5 €~ (0,0°)
m Assumptions (residuals have mean zero, constant
variance, are independent) are as in SLR
m Notation is cumbersome. To fix this, let

m X = [1,xil,...,x,',,]

L /GT: [ﬁOvﬁla"'vﬁp]
m Theny, =x,0 + ¢



Matrix notation

m Let
1 1 X171 R X1p Bo €1
Ul R T R e I
Yn 1 xn - Xnp Bp €n
m Then we can write the model in a more compact form:

Yix1 = Xn><(p+1)16(p+l)><l + €nx1

m X is called the design matrix



Matrix notation

y=XB+¢€
m ¢ is a random vector rather than a random variable
m E(e) = 0and Var(e) = 021

m Note that Var is potentially confusing; in the present
context it means the “variance-covariance matrix”



Mean and Variance of a Random Vector

m Lety’ = [y1,...,yn] be an n-component random vector.
Then its mean and variance are defined as

Ey)' = [E@),-- E(yn)]
Varly) = E|(y—Ey)ly—Ey)"| = E(yy") — (Ey)(Ey)"

m Let y and z be an n-component and an m-component
random vector respectively. Then their covariance is an
n x m matrix defined by

Cov(y,z) = E[(y — Ey)(z — Ez)"]



Basics on Random Vectors

Let Abe at x nnon-random matrix and Bbeap x m
non-random matrix. Then

E(Ay) = AE(y)
Var(Ay) = AVar(y)AT
Cov(Ay,Bz) = ACov(y,z)BT



Today’s big ideas

Simple linear regression definitions
m Properties of SLR least squares estimates

m Matrix notation for MLR

Suggested reading: Faraway Ch 2.2 - 2.3; ISLR 3.1



