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Today’s Lecture

� Sampling distribution of β̂

� Hypothesis tests for individual coefficients

� Global tests
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Statistical inference

� We have LSEs β̂0, β̂1, . . .; we want to know what this tells
us about β0, β1, . . ..

� Two basic tools are confidence intervals and hypothesis
tests
I Confidence intervals provide a plausible range of values for

the parameter of interest based on the observed data
I Hypothesis tests ask how probable are the data we

gathered under a null hypothesis about the data generating
distribution
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A quick word about p-values

P-values ...
� Are not universally adored

I Compares data vs null (usually no effect) rather than
testing whether data are consistent with your real
hypothesis

I Often misinterpreted (“probability the null is true”)

� Can get people in trouble
I Especially when misinterpreted

� Are still the default tool for inference
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Motivation

Recall the MLB data:
> setwd("˜/Desktop")
> download.file("http://www.openintro.org/stat/data/mlb11.RData", destfile = "mlb11.RData")
> load("mlb11.RData")
>
> mlb11 %>% tbl_df
Source: local data frame [30 x 12]

team runs at_bats hits homeruns bat_avg strikeouts stolen_bases wins new_onbase
(fctr) (int) (int) (int) (int) (dbl) (int) (int) (int) (dbl)

1 Texas Rangers 855 5659 1599 210 0.283 930 143 96 0.340
2 Boston Red Sox 875 5710 1600 203 0.280 1108 102 90 0.349
3 Detroit Tigers 787 5563 1540 169 0.277 1143 49 95 0.340
4 Kansas City Royals 730 5672 1560 129 0.275 1006 153 71 0.329
5 St. Louis Cardinals 762 5532 1513 162 0.273 978 57 90 0.341
6 New York Mets 718 5600 1477 108 0.264 1085 130 77 0.335
7 New York Yankees 867 5518 1452 222 0.263 1138 147 97 0.343
8 Milwaukee Brewers 721 5447 1422 185 0.261 1083 94 96 0.325
9 Colorado Rockies 735 5544 1429 163 0.258 1201 118 73 0.329
10 Houston Astros 615 5598 1442 95 0.258 1164 118 56 0.311
.. ... ... ... ... ... ... ... ... ... ...
Variables not shown: new_slug (dbl), new_obs (dbl)
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Motivation

Call:
lm(formula = runs ˜ at_bats + hits + homeruns + stolen_bases,

data = mlb11)
...

Coefficients:
Estimate

(Intercept) 581.2110
at_bats -0.2023
hits 0.6974
homeruns 1.2535
stolen_bases 0.5230
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 26.85 on 25 degrees of freedom
Multiple R-squared: 0.9087,Adjusted R-squared: 0.894
F-statistic: 62.17 on 4 and 25 DF, p-value: 1.26e-12
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Motivation

� Can we say anything about whether the effect of
stolen bases is “significant” after adjusting for other
variables?

� Can we compare this model to a model with only hits
and homeruns?
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Sampling distribution

If our usual assumptions are satisfied and ε iid∼ N
[
0, σ2] then

β̂ ∼ N
[
β, σ2(XTX)−1

]
.

β̂j ∼ N
[
β, σ2(XTX)−1

jj

]
.

� This will be used for inference.
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Asymptotic distribution

Assume that

� E(εi|xi) = 0 ∀i;
� Var(εi|xi) = σ2 ∀i;

�
lim

n→∞ XTX
n → Q where Q is a finite non-singular matrix.

Then √
n(β̂ − β)→ N

[
0, σ2Q−1

]
(This is essentially an extension of the central limit theorem)
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Simulations exploring distributions

Look at SLR
yi = 0 + 1xi + εi

under various conditions.

� First simulations: errors follow N [0, 1], let n vary

� Second simulations: errors follow 10
3 ∗ Bern(.1)− 1

3 , let n
vary

� In both cases, ε ∼ (0, 1)
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Normal errors
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Non-normal errors

0.0

2.5

5.0

7.5

10.0

12.5

0.0 0.5 1.0 1.5 2.0
LSE

de
ns

ity

SampSize

n10

n100

n1000

LSEs

0.0

0.5

1.0

1.5

−4 −2 0 2 4
Normalized

de
ns

ity

SampSize

n10

n100

n1000

Normalized LSEs

12 of 37

Jeff Goldsmith



Testing procedure

Calculate the probability of the observed data (or more extreme
data) under a null hypothesis.

� Often H0 : β1 = 0 and Ha : β1 6= 0

� Set α = P(falsely rejecting a true null hypothesis) (type I
error rate)

� Calculate a test statistic assuming the null hypothesis is
true

� Compute a p-value =

P(As or more extreme test statistic|H0)

� Reject or fail to reject H0
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Testing

For real data we have to estimate σ2 as well as β.

� Recall our estimate of the error variance is

σ̂2 =
RSS

n− p− 1
=

∑
i(yi − ŷi)

2

n− p− 1

� With Normally distributed errors, it can be shown that

(n− p− 1)
σ̂2

σ2 ∼ χ
2
n−p−1

Implication is that test statistics follow a t distribution rather
than Normal with df = n− p− 1
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Individual coefficients

For individual coefficients

� We can use the test statistic

T =
β̂j − βj

ŝe(β̂j)
=

β̂j − βj√
σ̂2(XTX)−1

jj

∼ tn−p−1

� For a two-sided test of size α, we reject if

|T| > t1−α/2,n−p−1

� The p-value gives P(tn−p−1 > Tobs|H0)

Note that t is a symmetric distribution that converges to a
Normal as n− p− 1 increases.
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Example revisited

Call:
lm(formula = runs ˜ at_bats + hits + homeruns + stolen_bases,

data = mlb11)
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 581.2110 526.4063 1.104 0.28006
at_bats -0.2023 0.1174 -1.724 0.09706 .
hits 0.6974 0.1131 6.164 1.91e-06 ***
homeruns 1.2535 0.1593 7.868 3.18e-08 ***
stolen_bases 0.5230 0.1686 3.101 0.00473 **
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 26.85 on 25 degrees of freedom
Multiple R-squared: 0.9087,Adjusted R-squared: 0.894
F-statistic: 62.17 on 4 and 25 DF, p-value: 1.26e-12
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Inference for linear combinations

Sometimes we are interested in making claims about cTβ for
some c.

� Define H0 : cTβ = cTβ0 or H0 : cTβ = 0

� We can use the test statistic

T =
cTβ̂ − cTβ0

ŝe(cTβ̂)
=

cTβ̂ − cTβ0√
σ̂2cT(XTX)−1c

� This test statistic is asymptotically Normally distributed

� For a two-sided test of size α, we reject if

|T| > z1−α/2
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Inference about multiple coefficients

Our model contains multiple parameters; often we want to
perform multiple tests:

H01 : β1 = 0

H02 : β2 = 0
... =

...

H0k : βk = 0

where each test has a size of α

� For any individual test, P(reject H0i|H0i) = α
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Inference about multiple coefficients

What about

P(reject at least one H0i|all H0i are true) = α
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Family-wise error rate

To calculate the FWER

� First note P(no rejections|all H0i are true) = (1− α)k

� It follows that
P(at least one rejection|all H0i are true) = 1− (1− α)k

� Further,

FWER = 1− (1− α)k = 1−
(

1− kα
k

)k

≈ 1− exp(1− kα)

≈ 1− (1− kα)

= kα

20 of 37



Family-wise error rate
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Addressing multiple comparisons

Three general approaches
� Do nothing in a reasonable way

I Define comparisons and expectations ahead of time
I Don’t trust scientifically implausible results
I Don’t over-emphasize isolated findings

� Correct for multiple comparisons
I Often, use the Bonferroni correction and use αi = α/k for

each test
I Thanks to the Bonferroni inequality, this gives an overall

FWER ≤ α
I Control false discovery rate

� Use a global test
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Global tests

Compare a smaller “null” model to a larger “alternative”
model

� Smaller model must be nested in the larger model

� That is, the smaller model must be a special case of the
larger model

� For both models, the RSS gives a general idea about how
well the model is fitting

� In particular, something like

RSSS − RSSL

RSSL

compares the relative RSS of the models
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Nested models

� These models are nested:

Smaller = Regression of Y on X1

Larger = Regression of Y on X1,X2,X3,X4

� These models are not:

Smaller = Regression of Y on X2

Larger = Regression of Y on X1,X3
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Global F tests

� Compute the test statistic

Fobs =
(RSSS − RSSL)/(dfS − dfL)

RSSL/dfL

� If H0 (the null model) is true, then Fobs ∼ FdfS−dfL,dfL

� Note dfs = n− pS − 1 and dfL = n− pL − 1

� We reject the null hypothesis if the p-value is above α,
where

p-value = P(FdfS−dfL,dfL > Fobs)
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Global F tests

There are a couple of important special cases for the F test
� The null model contains the intercept only

I When people say ANOVA, this is often what they mean
(although all F tests are based on an analysis of variance)

� The null model and the alternative model differ only by
one term
I Gives a way of testing for a single coefficient
I Turns out to be equivalent to a two-sided t-test: t2

dfL ∼ F1,dfL
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MLB data

You can test multiple coefficient simultaneously using the F test

> linmod.null1 = lm(runs ˜ hits + homeruns, data = mlb11)
> anova(linmod.null1, linmod)
Analysis of Variance Table

Model 1: runs ˜ hits + homeruns
Model 2: runs ˜ at_bats + hits + homeruns + stolen_bases

Res.Df RSS Df Sum of Sq F Pr(>F)
1 27 27128
2 25 18020 2 9107.8 6.3178 0.006015 **
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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MLB data

The F test is equivalent to the t test when there’s only one
parameter of interest

> linmod.null2 = lm(runs ˜ at_bats + hits + homeruns, data = mlb11)
> anova(linmod.null2, linmod)
Analysis of Variance Table

Model 1: runs ˜ at_bats + hits + homeruns
Model 2: runs ˜ at_bats + hits + homeruns + stolen_bases

Res.Df RSS Df Sum of Sq F Pr(>F)
1 26 24953
2 25 18020 1 6932.7 9.618 0.004728 **
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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MLB data

By default, R’s summary function compares to an
intercept-only null model

> linmod.null3 = lm(runs ˜ 1, data = mlb11)
> anova(linmod.null3, linmod)
Analysis of Variance Table

Model 1: runs ˜ 1
Model 2: runs ˜ at_bats + hits + homeruns + stolen_bases

Res.Df RSS Df Sum of Sq F Pr(>F)
1 29 197281
2 25 18020 4 179261 62.174 1.26e-12 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Test for “linearity”

� To test more flexible vs less flexible approaches to
non-linearity, we can often use global tests
I Polynomials and piecewise linear models have “linear”

associations as nested model; B-splines don’t

� Global F tests can be pretty useful here
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Testing for linearity
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Testing for linearity
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Testing linearity

> piecewise.underfit = lm(y ˜ x, data = data.nonlin)
> piecewise.fit = lm(y ˜ x + spline_15 + spline_5 + spline_9, data = data.nonlin)
> anova(piecewise.underfit, piecewise.fit)
Analysis of Variance Table

Model 1: y ˜ x
Model 2: y ˜ x + spline_15 + spline_5 + spline_9

Res.Df RSS Df Sum of Sq F Pr(>F)
1 98 73.444
2 95 8.240 3 65.205 250.6 < 2.2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Testing comparing twenty polynomials to four
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Testing comparing twenty polynomials to four

> piecewise.overfit = lm(y ˜ x + spline_1 + spline_15 + spline_2 + spline_25 + spline_3 + spline_35 +
+ spline_4 + spline_45 + spline_5 + spline_55 + spline_6 + spline_65 +
+ spline_7 + spline_75 + spline_8 + spline_85 + spline_9,
+ data = data.nonlin)
> anova(piecewise.fit, piecewise.overfit)
Analysis of Variance Table

Model 1: y ˜ x + spline_15 + spline_5 + spline_9
Model 2: y ˜ x + spline_1 + spline_15 + spline_2 + spline_25 + spline_3 +

spline_35 + spline_4 + spline_45 + spline_5 + spline_55 +
spline_6 + spline_65 + spline_7 + spline_75 + spline_8 +
spline_85 + spline_9

Res.Df RSS Df Sum of Sq F Pr(>F)
1 95 8.2395
2 81 6.7862 14 1.4533 1.239 0.2645
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Testing comparing twenty polynomials to four

> anova(piecewise.underfit, piecewise.fit, piecewise.overfit)
Analysis of Variance Table

Model 1: y ˜ x
Model 2: y ˜ x + spline_15 + spline_5 + spline_9
Model 3: y ˜ x + spline_1 + spline_15 + spline_2 + spline_25 + spline_3 +

spline_35 + spline_4 + spline_45 + spline_5 + spline_55 +
spline_6 + spline_65 + spline_7 + spline_75 + spline_8 +
spline_85 + spline_9

Res.Df RSS Df Sum of Sq F Pr(>F)
1 98 73.444
2 95 8.240 3 65.205 259.427 <2e-16 ***
3 81 6.786 14 1.453 1.239 0.2645
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Today’s big ideas

� Inference for multiple linear regression models

� Suggested reading: Faraway Ch 3.1 - 3.3
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