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Today’s Lecture

m Gauss-Markov theorem
® Maximum likelihood inference

m Regression diagnostics
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What's so great about LSEs?
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m Nice projection-space interpretation A
m They're the “best” linear unbiased estimators & M
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& ~NCo, =)

20f22


Jeff Goldsmith

Jeff Goldsmith


Gauss-Markov theorem

Assume the model
y=XB+e

where E(e) = 0 and Var(e) = ¢°1. Also assume X is a full rank
design matrix.
= Among all unbiased linear estimators Cy of the regression
coefficients 3, the LSE has minimum variance and is
unique.

We call the LSEs “BLUE”.
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Gauss-Markov theorem — proof
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Gauss-Markov theorem — proof
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Gauss-Markov theorem — caveats

The Gauss-Markov theorem is great, but notice the details:
» Assumed Var(e) = o?I

m» Only talking about unbiased linear estimators
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Maximum likelihood estimation
Py 1)
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Continue assuming the model

y=XB+¢€

where E(€) = 0 and Var(e) = o°I.
= Additionally, assume € ~ N(0, o2I)

m Put differently, we're imposing the model

y ~ N(XB,0°])

m y is multivariate Normal with uncorrelated entries; the y;
are each independently Normally distributed
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Maximum likelihood estimation

Using independently Normal y;’s:
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Maximum likelihood estimation

Using matrix notation:
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Regression diagnostics
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m Regression diagnostics are tools used to determine
whether a given model is consistent with the data

Usually focus on residuals

m Recall that fitted values are given by y = Hy where H is
the hat matrix _— |1 XE = s(nT )

y=(-Hy
= (T- H>LB

)

m Residuals are defined as y —
A
€
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€ and €

m Residuals are mean zero, but don’t have constant variance
nor are they uncorrelated.
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US; H:J

.é:(z—@j? = (I - H)e

m If € is Normally distributed, so are the residuals

m Also note residuals sum to zero
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Residuals and fitted values

glan i
Cov(e', ) = Coo((I — H)y, Hy)

(I - H)o*IH"
= o’*(H-H)
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m So residuals and fitted values are uncorrelated
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Residuals when model is correct

m Often we plot the residuals against one of the predictors or
against the fitted values
s What we look for: y—
AT-1w) =
v > E(éx) = 0 —— )
Ve = V(é]x) = 02 1 —h,‘i
» If the model is incorrect, you may be able to spot:

» Patterns in the residuals
» Clear non-constant variance

14 of 22


Jeff Goldsmith


Some data plots
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Some residual plots

fitted3

fitted2

fitted1
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Checking Normality assumption

m We often assume Normality for the errors

m Useful to check Normality of residuals
m Try a QQ plot:

» Compute the sample quantiles of the residuals
» Compute the quantiles of a standard Normal of size n
» Plot these against each other

m Can also use the Shapiro-Wilk test based on correlation
between observed and theoretical quantiles
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Checking Normality assumption
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Checking model structure

m You can plot residuals against each of the predictors, or
plot outcomes against predictors

m Keep in mind the MLR uses adjusted relationships;
scatterplots don’t show that adjustment

» Adjusted variable plots (partial regression plots, added
variable plots) can be useful



Adjusted variable plots

Regress y on everything but x;; take residuals r,_,,

Regress x; on everything but x;; take residuals |y,

Regress Fy|—x; ON Ty ;s slope of this line will match j; in
the full MLR

m Plot of Tyl against L shows the “adjusted”
relationship



What should you do ...

if your assumptions are violated?
» Depends on the assumption

m For problems with the errors, use LSE anyway; maybe use
bootstrap for inference

» For non-linearity, try an augmented model



Today’s big ideas

m Gauss-Markov, MLE, regression diagnostics

m Suggested reading: Faraway Ch 2.8, Ch 7



