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Today’s Lecture

� Gauss-Markov theorem

� Maximum likelihood inference

� Regression diagnostics
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What’s so great about LSEs?

� Nice projection-space interpretation

� They’re the “best” linear unbiased estimators

� They’re maximum likelihood estimators under
Normally-distributed errors
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Gauss-Markov theorem

Assume the model
y = Xβ + ε

where E(ε) = 0 and Var(ε) = σ2I. Also assume X is a full rank
design matrix.

� Among all unbiased linear estimators Cy of the regression
coefficients β, the LSE has minimum variance and is
unique.

We call the LSEs “BLUE”.
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Gauss-Markov theorem – proof

4 of 22

Jeff Goldsmith

Jeff Goldsmith

Jeff Goldsmith



Gauss-Markov theorem – proof
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Gauss-Markov theorem – caveats

The Gauss-Markov theorem is great, but notice the details:

� Assumed Var(ε) = σ2I

� Only talking about unbiased linear estimators
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Maximum likelihood estimation

Continue assuming the model

y = Xβ + ε

where E(ε) = 0 and Var(ε) = σ2I.

� Additionally, assume ε ∼ N(0, σ2I)

� Put differently, we’re imposing the model

y ∼ N(Xβ, σ2I)

� y is multivariate Normal with uncorrelated entries; the yi

are each independently Normally distributed
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Maximum likelihood estimation

Using independently Normal yi’s:
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Maximum likelihood estimation

Using matrix notation:
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Regression diagnostics

� Regression diagnostics are tools used to determine
whether a given model is consistent with the data

� Usually focus on residuals

� Recall that fitted values are given by ŷ = Hy where H is
the hat matrix

� Residuals are defined as y− ŷ = (I −H)y
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ε̂ and ε

� E(ε̂) =

� Var(ε̂) =

� Residuals are mean zero, but don’t have constant variance
nor are they uncorrelated.
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ε̂ and ε

� ε̂ = = (I −H)ε

� If ε is Normally distributed, so are the residuals

� Also note residuals sum to zero
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Residuals and fitted values

Cov(ε̂T, ŷ) = Cov((I −H)y,Hy)

= (I −H)σ2IHT

= σ2(H −H)

� So residuals and fitted values are uncorrelated
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Residuals when model is correct

� Often we plot the residuals against one of the predictors or
against the fitted values

� What we look for:
I E(ε̂|x) = 0
I V(ε̂|x) = σ2(1− hii)

� If the model is incorrect, you may be able to spot:
I Patterns in the residuals
I Clear non-constant variance
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Some data plots
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Some residual plots
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Checking Normality assumption

� We often assume Normality for the errors

� Useful to check Normality of residuals
� Try a QQ plot:

I Compute the sample quantiles of the residuals
I Compute the quantiles of a standard Normal of size n
I Plot these against each other

� Can also use the Shapiro-Wilk test based on correlation
between observed and theoretical quantiles
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Checking Normality assumption
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Checking model structure

� You can plot residuals against each of the predictors, or
plot outcomes against predictors

� Keep in mind the MLR uses adjusted relationships;
scatterplots don’t show that adjustment

� Adjusted variable plots (partial regression plots, added
variable plots) can be useful
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Adjusted variable plots

� Regress y on everything but xj; take residuals ry|−xj

� Regress xj on everything but xj; take residuals rxj|−xj

� Regress ry|−xj on rxj|−xj ; slope of this line will match βj in
the full MLR

� Plot of ry|−xj against rxj|−xj shows the “adjusted”
relationship
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What should you do ...

if your assumptions are violated?

� Depends on the assumption

� For problems with the errors, use LSE anyway; maybe use
bootstrap for inference

� For non-linearity, try an augmented model
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Today’s big ideas

� Gauss-Markov, MLE, regression diagnostics

� Suggested reading: Faraway Ch 2.8, Ch 7
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