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Today’s Lecture

� Welcome back!!

� Model selection vs. model checking

� Stepwise model selection

� Criterion-based approaches
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Model selection vs. model checking

In a model of the form

y|x = f (x) + ε

model selection focuses on how you construct f (·); model
checking asks whether the ε match the assumed form.
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Model selection

Things to keep in mind

� Why am I building a model?

� Is this my primary or secondary analysis?

� What predictors will I allow?

� What forms for f (x)?
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Motivation

Why am I building a model?

� Estimate associations between x and y

� Test significance of association between x and y

� Predict future y for new x

These goals will generally not result in the same final model.
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Primary vs secondary

Is this my primary or secondary analysis?

� Seriously – have you (or anyone else) analyzed this data
before?

� Primary analyses are often very constrained or have the
goal of confirming a hypothesis

� Secondary analyses are often less constrained; may be
examining hunches or generating new hypotheses

Both are valid, but have different implications for multiple
comparisons
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Model structure

What predictors will I allow? What forms for f (x)?

� All variables? All continuous variables? Binary versions of
continuous variables? Known significant variables?

� Linear models? Non-linearity? Interactions?

Some of this you know ahead of time, some you discover as
you go
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Model selection is hard

� If we’re asking which is the “true” model, we’re gonna
have a bad time

� In practice, issues with sample size, collinearity, and
available predictors are real problems

� It is often possible to differentiate between better models
and less-good models, though
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Estimating associations

� We may not care about whether an association is
significant in our data; we’re just looking for associations

� Some covariates should be included regardless of
significance – models have to be convincing in the
scientific context

� This can affect the baseline model, or at least the class of
models one considers
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Basic idea for model selection

� Specify a class of models

� Define a criterion to summarize the fit of each model in the
class

� Select the model that optimizes the criterion you’re using

Again, we’re focusing on f (x) in the model specification. Once
you’ve selected a model, you should subject it to regression
diagnostics – which might change or augment the class of
models you specify or alter your criterion.
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Classes of models

Some examples of classes of models:

� Linear models including all subsets of x1, ..., xp

� Linear models including all subsets of x1, ..., xp and their
first order interactions

� All functions f (x1) such that f ′′(x1) is continuous

� Additive models of the form
f (x) = f1(x1) + f2(x2) + f3(x3)... where f ′′k (xk) is continuous
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Popular criteria

� Akaike Information Criterion

� Bayes Information Criterion

� F- or t-tests

� Prediction RSS (PRESS) or CV

11 of 28



Sequential methods (Forward Stepwise)

� Start with “baseline” (usually intercept-only) model

� For every possible model that adds one term, evaluate the
criterion you’ve settled on

� Choose the one with the best “score” (lowest AIC, smallest
p-value)

� For every possible model that adds one term to the current
model, evaluate your criterion

� Repeat until either adding a new term doesn’t improve the
model or all variables are included
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Sequential methods (Backward Stepwise)

� Start with every term in the model

� Consider all models with one predictor removed

� Remove the term that leads to the biggest score
improvement

� Repeat until removing additional terms doesn’t improve
your model
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Sequential methods

� There are many potential models – usually exhausting the
model space is difficult or infeasible

� Stepwise methods don’t consider all possibilities

� Stepwise methods work well for F- and t-tests, which
require nested models

� Other criteria don’t require nested models (which can be
nice) but don’t ascertain significance (which can be a
downer)
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Sequential methods

Sequential methods are basically an admission that you had no
idea what you were doing with the data

15 of 28



AIC

AIC (“An Information Criterion”) measures goodness-of-fit
through RSS (equivalently, log likelihood) and penalizes model
size:

AIC = n log(RSS/n) + 2p

� Small AIC’s are better, but scores are not directly
interpretable

� Penalty on model size tries to induce parsimony
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BIC

BIC (“Bayes Information Criterion”) similarly measures
goodness-of-fit through RSS (equivalently, log likelihood) and
penalizes model size:

BIC = n log(RSS/n) + p log(n)

� Small BIC’s are better, but scores are not directly
interpretable

� AIC and BIC measure goodness-of-fit through RSS, but use
different penalties for model size. They won’t always give
the same answer
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Adjusted R2

� Recall:
R2 = 1− RSS

TSS

� Definition of adjusted R2:

R2
a = 1− RSS/(n− p− 1)

TSS/(n− 1)
= 1−

σ̂2
model
σ̂2

null

= 1− n− 1
n− p− 1

(1− R2)

� Minimizing the standard error of prediction means
minimizing σ̂2

model which in turn means maximizing R2
a

� Adding a predictor will not necessarily increase R2
a unless

it has some predictive value
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PRESS

Prediction residual sum of squares is the most clearly focused
on prediction

PRESS =
∑

(yi − xT
i β̂(−i))

2

Looks computationally intensive, but for linear regression
models this is equivalent to

PRESS =
∑(

ri

1− hii

)2

PRESS is leave-one-out cross validation; other forms of cross
validation are equally vaid
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Life expectancy example

� Response: life expectancy

� Predictors: population, capital income, illiteracy rate,
murder rate, percentage of high-school graduates, number
of days with minimum temperature < 32, land area

� Data for 50 US states

� Time span: 1970-1975
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Example

> data(state)
> statedata = data.frame(state.x77,row.names=state.abb)
> g = lm(Life.Exp ˜., data=statedata)
> summary(g)
...

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.094e+01 1.748e+00 40.586 < 2e-16 ***
Population 5.180e-05 2.919e-05 1.775 0.0832 .
Income -2.180e-05 2.444e-04 -0.089 0.9293
Illiteracy 3.382e-02 3.663e-01 0.092 0.9269
Murder -3.011e-01 4.662e-02 -6.459 8.68e-08 ***
HS.Grad 4.893e-02 2.332e-02 2.098 0.0420 *
Frost -5.735e-03 3.143e-03 -1.825 0.0752 .
Area -7.383e-08 1.668e-06 -0.044 0.9649

...
> AIC(g)
[1] 121.7092
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Example

> g = lm(Life.Exp ˜ . - Area, data=statedata)
> summary(g)
...

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.099e+01 1.387e+00 51.165 < 2e-16 ***
Population 5.188e-05 2.879e-05 1.802 0.0785 .
Income -2.444e-05 2.343e-04 -0.104 0.9174
Illiteracy 2.846e-02 3.416e-01 0.083 0.9340
Murder -3.018e-01 4.334e-02 -6.963 1.45e-08 ***
HS.Grad 4.847e-02 2.067e-02 2.345 0.0237 *
Frost -5.776e-03 2.970e-03 -1.945 0.0584 .

...
> AIC(g)
[1] 119.7116
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Example

> g = lm(Life.Exp ˜ . - (Area + Illiteracy), data=statedata)
> summary(g)
...

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.107e+01 1.029e+00 69.067 < 2e-16 ***
Population 5.115e-05 2.709e-05 1.888 0.0657 .
Income -2.477e-05 2.316e-04 -0.107 0.9153
Murder -3.000e-01 3.704e-02 -8.099 2.91e-10 ***
HS.Grad 4.776e-02 1.859e-02 2.569 0.0137 *
Frost -5.910e-03 2.468e-03 -2.395 0.0210 *

...
> AIC(g)
[1] 117.7196

23 of 28



Example

> g = lm(Life.Exp ˜ . - (Area + Illiteracy + Income), data=statedata)
> summary(g)
...

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.103e+01 9.529e-01 74.542 < 2e-16 ***
Population 5.014e-05 2.512e-05 1.996 0.05201 .
Murder -3.001e-01 3.661e-02 -8.199 1.77e-10 ***
HS.Grad 4.658e-02 1.483e-02 3.142 0.00297 **
Frost -5.943e-03 2.421e-03 -2.455 0.01802 *

...
> AIC(g)
[1] 115.7326
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Example

> g = lm(Life.Exp ˜ . - (Area + Illiteracy + Income + Population), data=statedata)
> summary(g)
...

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 71.036379 0.983262 72.246 < 2e-16 ***
Murder -0.283065 0.036731 -7.706 8.04e-10 ***
HS.Grad 0.049949 0.015201 3.286 0.00195 **
Frost -0.006912 0.002447 -2.824 0.00699 **

...
> AIC(g)
[1] 117.9743
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So now what?

� It’s common to treat the final model as if it were the only
model ever considered – to base all interpretation on this
model and to assume the inference is accurate

� This doesn’t really reflect the true model building
procedure, and can misrepresent what actually happened

� Inference is difficult in this case; it’s hard to write down a
statistical framework for the entire procedure

� Predictions can be made from the final model, but
uncertainty around predictions will be understated

� P-values, CIs, etc will be incorrect
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What to do?

� Remember the bootstrap?

� We can resample subjects with replacement, and repeat the
entire process

� Produce predicted values ŷb
i for x = {xi}I

i=1 based on the
final bootstrap model

� Base inference for predictions on the distribution of {ŷb
i }

B
b=1

Downside – only gives inference for predicted values, not for
the parameter estimates. Bootstrap models might not be the
same as the final model (which is kind of the point).
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Shrinkage/penalization

As a preview of things to come -

� There are other strategies for model/variable selection or
tuning

� Penalized regression adds an explicit penalty to the least
squares criterion

� That penalty can keep regression coefficients from being
too large, or can shrink coefficients to zero

� We’ll worry more about this next time
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Variable selection in polynomial models

A quick note about polynomials. If you fit a model of the form

yi = β0 + β1x + β2x2 + εi

and find the quadratic term is significant but the linear term is
not...

� You should still keep the linear term in the model

� Otherwise, your model is sensitive to centering – shifting x
will change your model
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Today’s big ideas

� Model selection

� Suggested reading: Ch 10

30 of 28


