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Today’s Lecture

� Ridge regression

� Lasso regression
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Variable selection

Suppose Var(ε) = σ2I. In Lecture 15 we talked about model
selection:

� Given a lot of variables, which should we include in a
model?

� Several approaches, but variables were either in or out

� Difficult for large p

� Gives results that are unbiased for the truth, but can be
high variance
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Gauss-Markov and MSE

Recall the Gauss-Markov theorem says OLS is BLUE. Maybe
“unbiased” is more restrictive than we’re interested in.

� Alternatively, we could try to minimize the mean squared
error:

MSE(β̂) = E
[(

β̂ − β
)2
]

= E
[(

β̂ − E(β̂) + E(β̂)− β
)2
]

= E
[(

β̂ − E(β̂)
)2
]
+
(

E(β̂)− β
)2

= variance(β̂) + bias2(β̂)
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Penalized regression

� Could try a shrinkage / penalization approach to trade
some bias for lower variance and overall MSE

� Rather than a variable selection approach, all parameters
stay in the model, but we restrict their effect

� We penalize the size of the coefficients – unimportant
variables will have their coefficients forced closer to zero
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Ridge regression

OLS is derived by minimizing the RSS:

β̂OLS = arg minβ [RSS(β)]

= arg minβ

 n∑
i=1

yi − β0 −
p∑

j=1

βjxi,j

2

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Ridge regression

Ridge regression adds an L2 penalty to this:

β̂R = arg minβ [RSS(β) + λ ||β||2]

= arg minβ

 n∑
i=1

yi − β0 −
p∑

j=1

βjxi,j

2

+ λ

p∑
j=1

β2
j


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Graphical representation

The penalty shifts the center of the criterion:
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Ridge regression in matrix notation

In matrix notation, we want to minimize

RSS(β) + λ ||β||2 = (y− Xβ)T(y− Xβ) + λβTPβ

where P is the penalty matrix.
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Ridge regression in matrix notation

Finding solutions to

RSS(β) + λ ||β||2 = (y− Xβ)T(y− Xβ) + λβTPβ
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Ridge regression estimates

The ridge regression estimates are given by

β̂R =
(

XTX + λP
)−1

XTy

λ acts as a tuning parameter

� For “small” values of λ, β̂R ≈ β̂OLS

� For “large” values of λ, β̂R ≈ 0
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Is there an MLE equivalent to this?

Sort of ...

� We’ll worry more about this later

� If we assume the βj’s are random (especially Normal) then
there’s a likelihood function that includes the penalty term
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Properties of ridge regression

� Ridge regression estimates are biased:

E(β̂R) = E
[(

XTX + λP
)−1

XTy
]

=
(

XTX + λP
)−1

XTXβ

� Tend to have lower variance than OLS

� Often lead to lower MSE’s

� Interesting note – penalized estimates may be identifiable
even when p > n
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MSE for predictions

MSE for β can be hard to discuss in practice

� MSE for predictions can be easier to focus on

MSE(ŷ) = E
[
(ŷ− y)2

]
� Could evaluate this using cross-validation
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Tuning parameter selection

The tuning parameter λ is important for overall model fit

� Depending on λ, we may be looking at OLS or β̂ = 0

� “Truth” is usually somewhere in the middle

� It turns out that we’ve avoided variable selection, but now
have to focus on tuning parameter selection

� Cross-validation is a common way of choosing λ
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Life expectancy example

� Response: life expectancy

� Predictors: population, capital income, illiteracy rate,
murder rate, percentage of high-school graduates, number
of days with minimum temperature < 32, land area

� Data for 50 US states

� Time span: 1970-1975
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Example

> data(state)
> statedata = data.frame(state.x77,row.names=state.abb)
> model.full = lm(Life.Exp ˜., data=statedata)
> coef(model.full)
(Intercept) Population Income Illiteracy Murder HS.Grad Frost Area

7.094e+01 5.180e-05 -2.180e-05 3.382e-02 -3.011e-01 4.892e-02 -5.735e-03 -7.383e-08
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Example

> model.ridge1 = lm.ridge(Life.Exp ˜., data=statedata, lambda = 1000000)
> coef(model.ridge1)
(Intercept) Population Income Illiteracy Murder HS.Grad Frost Area

7.087e+01 -1.022e-09 3.716e-08 -6.479e-05 -1.419e-05 4.837e-06 3.383e-07 -8.442e-11
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Example

> model.ridge2 = lm.ridge(Life.Exp ˜., data=statedata, lambda = .0000001)
> coef(model.ridge2)
(Intercept) Population Income Illiteracy Murder HS.Grad Frost Area

7.094e+01 5.180e-05 -2.180e-05 3.382e-02 -3.011e-01 4.892e-02 -5.735e-03 -7.383e-08
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CV Plot
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Coef Plot
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Example

> Lam.Final = lam[which(apply(MSE, 2, mean) == min(apply(MSE, 2, mean)))]
> model.ridge2 = lm.ridge(Life.Exp ˜., data=statedata, lambda = Lam.Final)
> round(coef(model.ridge3), 5)

Population Income Illiteracy Murder HS.Grad Frost Area
70.55067 0.00003 0.00006 -0.16047 -0.22998 0.04334 -0.00438 0.00000
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Lasso penalization

� Lasso (least absolute shrinkage and selection operator) is a
more recent penalized regression estimator

� Basic form is similar to that of ridge regression, but penalty
function is different:

β̂L = arg minβ [RSS(β) + λ ||β||1]

= arg minβ

 n∑
i=1

yi − β0 −
p∑

j=1

βjxi,j

2

+ λ

p∑
j=1

|βj|


� Quite popular at the moment – broadly used, many

adaptations
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Lasso penalization

Some properties of Lasso penalties

� No closed form solution (although there are some
computationally useful tricks)

� The different penalty form means Lasso has a tendency to
shrink coefficients all the way to zero

� Can be useful as an automated variable selection approach

� Still have to choose λ; cross validation is a popular tool for
this
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Example: Mortality Rate

lm(formula = Life.Exp ˜ ., data = statedata)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.094e+01 1.748e+00 40.586 < 2e-16 ***
Population 5.180e-05 2.919e-05 1.775 0.0832 .
Income -2.180e-05 2.444e-04 -0.089 0.9293
Illiteracy 3.382e-02 3.663e-01 0.092 0.9269
Murder -3.011e-01 4.662e-02 -6.459 8.68e-08 ***
HS.Grad 4.893e-02 2.332e-02 2.098 0.0420 *
Frost -5.735e-03 3.143e-03 -1.825 0.0752 .
Area -7.383e-08 1.668e-06 -0.044 0.9649
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Example: Mortality Rate

> model.lasso1 = glmnet(X, y, lambda = 0.00001)
> coef(model.lasso1)
8 x 1 sparse Matrix of class "dgCMatrix"

s0
(Intercept) 7.094187e+01
Population 5.185263e-05
Income -2.191147e-05
Illiteracy 3.467775e-02
Murder -3.012157e-01
HS.Grad 4.894538e-02
Frost -5.730853e-03
Area -7.370497e-08
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Example: Mortality Rate

> model.lasso2 = glmnet(X, y, lambda = 0.01)
> coef(model.lasso2)
8 x 1 sparse Matrix of class "dgCMatrix"

s0
(Intercept) 7.101048e+01
Population 4.762476e-05
Income .
Illiteracy .
Murder -2.944565e-01
HS.Grad 4.551701e-02
Frost -5.542157e-03
Area .
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Example: Mortality Rate

> model.lasso3 = glmnet(X, y, lambda = 10)
> coef(model.lasso3)
8 x 1 sparse Matrix of class "dgCMatrix"

s0
(Intercept) 70.8786
Population 0.0000
Income .
Illiteracy .
Murder .
HS.Grad .
Frost .
Area .
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CV plot
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Coef plot
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Example: Mortality Rate

> Lam.Final = lam[which(apply(MSE, 2, mean) == min(apply(MSE, 2, mean)))]
> model.lasso4 = glmnet(X, y, lambda = Lam.Final)
> coef(model.lasso4)
8 x 1 sparse Matrix of class "dgCMatrix"

s0
(Intercept) 7.088048e+01
Population 2.786869e-05
Income .
Illiteracy .
Murder -2.498481e-01
HS.Grad 3.716564e-02
Frost -2.399294e-03
Area .
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Practical note

I In most cases, it’s best to standardize predictors prior to
penalizing

I Doing so ensures that the coefficients to be penalized have
comparable effects on the outcome

I Not always obvious – see, e.g. categorical and binary
predictors – but useful nonetheless
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Midterm grades
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Today’s big ideas

� Ridge regression

� Suggested reading: Faraway Ch. 9.5, ISLR Ch 6.2
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