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Today’s Lecture

� Weighted least squares

� Generalized least squares
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Multiple regression model

We typically pose a model of the form

yi|xi = xiβ + εi

and assume Var(εi) = σ2

� Today we’re concerned with Var(εi) = σ2

wi

� More generally, we’ll look at Var(ε) = σ2W or Var(ε) = Σ

� Contexts include non-constant variance, sampling data
(survey weights), proportional data (sample size in
groups), meta-analysis (variance of effects in each study)
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Weighted least squares

� One way to handle non-constant variance is a variance
stabilizing transformation, which works well if the
variance depends on the mean

� Weighted least squares builds the weighting terms directly
into the criterion to be minimized

� Let W be the matrix with (i, i)th entry 1
wi

and 0 elsewhere

� Then Var(ε) = σ2W
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Weighted least squares

� For weighted least squares, we minimize the RSS with
terms weighted according to their variance

RSSW(β) =
∑

wi(yi − xT
i β)2

= (y− Xβ)TW−1(y− Xβ)

� We weight more heavily terms with low variance (small
σ2

wi
) and less heavily terms with high variance (big σ2

wi
)

� Basic plan – differentiate RSSW(β) wrt β and find the
minimum
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Weighted least squares estimator

RSSW(β) = (y− Xβ)TW−1(y− Xβ)
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A note about MLE

We have the model
y = Xβ + ε

where E(ε) = 0 and Var(ε) = σ2W.

� Additionally, assume ε ∼ N(0, σ2W)

� Put differently, we’re imposing the model

y ∼ N(Xβ, σ2W)

� y is multivariate Normal
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Maximum likelihood estimation

Using matrix notation:

7 of 22



Pre-whitening data

� Let W1/2 be the diagonal matrix with (i, i)th 1√
wi

and 0
elsewhere

� So W−1/2 def
=
(

W1/2
)−1

is a diagonal matrix with
√

wi on
the main diagonal and 0 elsewhere

� Note W = W1/2(W1/2)T and W1/2W−1/2 = I

� So Var(W−1/2ε) =

8 of 22



Pre-whitening data

� Let’s pre-multiply everything by W−1/2 :
I z = W−1/2y
I M = W−1/2X
I δ = W−1/2ε

� Our model is now
z = Mβ + δ

� The OLS estimate of β is

(MTM)−1MTz
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WLS example

� Data from a physics experiment, available as physics
from the library alr3

� y: scattering cross-section, s: square of total energy,
x = s−1/2

� Theoretical model:
E(y|s) = β0 + β1s−1/2 + relatively small terms

� Regression model: y = β0 + β1x + ε

� SD =
√

Var(y|x) are known from the experiment
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WLS example

> library(alr3)
> data(physics)
> physics

x y SD
1 0.345 367 17
2 0.287 311 9
3 0.251 295 9
4 0.225 268 7
5 0.207 253 7
6 0.186 239 6
7 0.161 220 6
8 0.132 213 6
9 0.084 193 5
10 0.060 192 5
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WLS example

> lm.physics.wls <- lm(y˜x, weights=1/SDˆ2,data=physics)
> summary(lm.physics.wls)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 148.473 8.079 18.38 7.91e-08 ***
x 530.835 47.550 11.16 3.71e-06 ***

Residual standard error: 1.657 on 8 degrees of freedom
Multiple R-squared: 0.9397, Adjusted R-squared: 0.9321
F-statistic: 124.6 on 1 and 8 DF, p-value: 3.710e-06
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WLS example

> lm.physics.ols <- lm(y˜x, data=physics)
> summary(lm.physics.ols)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 135.00 10.08 13.4 9.21e-07 ***
x 619.71 47.68 13.0 1.16e-06 ***

Residual standard error: 12.69 on 8 degrees of freedom
Multiple R-squared: 0.9548,Adjusted R-squared: 0.9491
F-statistic: 168.9 on 1 and 8 DF, p-value: 1.165e-06
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WLS in practice

I Real life is rarely nice enough to give you the right weight
I Try to obtain an estimate of var(εi), plug that into W ...
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Generalized least squares

� Weighted least squares can help a lot, but what if errors are
correlated?

� That is, suppose our model is

y = Xβ + ε

where E(ε) = 0 and Var(ε) = σ2Σ

� (By analogy with WLS, suppose Σ is known but σ2 is not;
in general, one usually writes Var(ε) = Σ)

� Note, in terms of generality, GLS > WLS > OLS
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Generalized least squares

� Writing out RSSG(β) as a sum is hard; possible using
vector notation.

� Possibilities:
I MLE (equivalent to minimizing RSS)
I Pre-whiten
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MLE

We have the model
y = Xβ + ε

where E(ε) = 0 and Var(ε) = σ2Σ.

� Additionally, assume ε ∼ N(0, σ2Σ)

� Put differently, we’re imposing the model

y ∼ N(Xβ, σ2Σ)

� y is multivariate Normal
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MLE

Using matrix notation:
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Pre-whitening data

� Let Σ = SST be the Cholesky decomposition of Σ

� Let’s pre-multiply everything by S−1:
I z = W−1/2y
I M = W−1/2X
I δ = W−1/2ε

� Our model is now
z = Mβ + δ

� The OLS estimate of β is

(MTM)−1MTz
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Some useful notes on GLS

Using β̂GLS = (XTΣ−1X)−1XTΣ−1y, it turns out that

� E(β̂GLS) = β

� Var(β̂GLS) = σ2(XTΣ−1X)−1
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Some less useful notes on GLS

� Typically we don’t really know Σ and have to estimate it
too

� A common approach is to parameterize Σ using a small
number of parameters

� Comes up a lot for longitudinal and multilevel data
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Today’s big ideas

� Weighted and generalized least squares

� Suggested reading: Ch. 5
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