Linear Regression Models P8111

Lecture 19

Jeff Goldsmith April 5, 2016

Today's Lecture

- Weighted least squares
- Generalized least squares

Multiple regression model

We typically pose a model of the form

$$y_i | \mathbf{x}_i = \mathbf{x}_i \boldsymbol{\beta} + \epsilon_i$$

and assume $Var(\epsilon_i) = \sigma^2$

- Today we're concerned with $Var(\epsilon_i) = \frac{\sigma^2}{w_i}$
- More generally, we'll look at $Var(\epsilon) = \sigma^2 W$ or $Var(\epsilon) = \Sigma$
- Contexts include non-constant variance, sampling data (survey weights), proportional data (sample size in groups), meta-analysis (variance of effects in each study)

Weighted least squares

- One way to handle non-constant variance is a variance stabilizing transformation, which works well if the variance depends on the mean
- Weighted least squares builds the weighting terms directly into the criterion to be minimized
- Let *W* be the matrix with $(i, i)^{th}$ entry $\frac{1}{w_i}$ and 0 elsewhere
- Then $Var(\epsilon) = \sigma^2 W$

Weighted least squares

• For weighted least squares, we minimize the RSS with terms weighted according to their variance

$$RSS_W(\beta) = \sum w_i (y_i - \mathbf{x}_i^T \beta)^2$$

= $(y - \mathbf{X}\beta)^T \mathbf{W}^{-1} (y - \mathbf{X}\beta)^T$

- We weight more heavily terms with low variance (small $\frac{\sigma^2}{w_i}$) and less heavily terms with high variance (big $\frac{\sigma^2}{w_i}$)
- Basic plan differentiate *RSS_W*(β) wrt β and find the minimum

Weighted least squares estimator

 $RSS_W(\beta) = (y - X\beta)^T W^{-1} (y - X\beta)$

A note about MLE

We have the model

$$y = X\beta + \epsilon$$

where $E(\epsilon) = 0$ and $Var(\epsilon) = \sigma^2 W$.

- Additionally, assume $\boldsymbol{\epsilon} \sim N(\boldsymbol{0}, \sigma^2 \boldsymbol{W})$
- Put differently, we're imposing the model

$$\boldsymbol{y} \sim N(\boldsymbol{X}\boldsymbol{\beta}, \sigma^2 \boldsymbol{W})$$

• *y* is multivariate Normal

Maximum likelihood estimation

Using matrix notation:

Pre-whitening data

- Let $W^{1/2}$ be the diagonal matrix with $(i, i)^{th} \frac{1}{\sqrt{w_i}}$ and 0 elsewhere
- So $W^{-1/2} \stackrel{def}{=} (W^{1/2})^{-1}$ is a diagonal matrix with $\sqrt{w_i}$ on the main diagonal and 0 elsewhere
- Note $W = W^{1/2} (W^{1/2})^T$ and $W^{1/2} W^{-1/2} = I$
- So $Var(W^{-1/2}\epsilon) =$

Pre-whitening data

• Let's pre-multiply everything by $W^{-1/2}$:

$$z = W^{-1/2}y$$

$$M = W^{-1/2}X$$

$$\delta = W^{-1/2}\epsilon$$

Our model is now

$$z=Meta+\delta$$

• The OLS estimate of β is

 $(\boldsymbol{M}^T\boldsymbol{M})^{-1}\boldsymbol{M}^T\boldsymbol{z}$

- Data from a physics experiment, available as physics from the library alr3
- *y*: scattering cross-section, *s*: square of total energy, $x = s^{-1/2}$
- Theoretical model: $E(y|s) = \beta_0 + \beta_1 s^{-1/2} + \text{relatively small terms}$
- Regression model: $y = \beta_0 + \beta_1 x + \epsilon$
- $SD = \sqrt{Var(y|x)}$ are known from the experiment

> library(alr3) > data (physics) > physics х y SD 0.345 367 17 1 0.287 311 9 2 0.251 295 3 9 4 0.225 268 0.207 253 5 0.186 239 6 6 0.161 220 6 7 0.132 213 6 8 0.084 193 5 9 10 0.060 192 5

```
> lm.physics.wls <- lm(y<sup>x</sup>x, weights=1/SD<sup>2</sup>,data=physics)
> summary(lm.physics.wls)
```

Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 148.473 8.079 18.38 7.91e-08 *** x 530.835 47.550 11.16 3.71e-06 ***

Residual standard error: 1.657 on 8 degrees of freedom Multiple R-squared: 0.9397, Adjusted R-squared: 0.9321 F-statistic: 124.6 on 1 and 8 DF, p-value: 3.710e-06

```
> lm.physics.ols <- lm(y<sup>x</sup>x, data=physics)
> summary(lm.physics.ols)
```

Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 135.00 10.08 13.4 9.21e-07 *** x 619.71 47.68 13.0 1.16e-06 ***

Residual standard error: 12.69 on 8 degrees of freedom Multiple R-squared: 0.9548,Adjusted R-squared: 0.9491 F-statistic: 168.9 on 1 and 8 DF, p-value: 1.165e-06

WLS in practice

- ► Real life is rarely nice enough to give you the right weight
- Try to obtain an estimate of $var(\epsilon_i)$, plug that into W ...

Generalized least squares

- Weighted least squares can help a lot, but what if errors are correlated?
- That is, suppose our model is

$$y = X\beta + \epsilon$$

where $E(\epsilon) = 0$ and $Var(\epsilon) = \sigma^2 \Sigma$

- (By analogy with WLS, suppose Σ is known but σ² is not; in general, one usually writes Var(ε) = Σ)
- Note, in terms of generality, GLS > WLS > OLS

Generalized least squares

- Writing out *RSS_G*(β) as a sum is hard; possible using vector notation.
- Possibilities:
 - ► MLE (equivalent to minimizing RSS)
 - Pre-whiten

MLE

We have the model

$$y = X\beta + \epsilon$$

where $E(\epsilon) = 0$ and $Var(\epsilon) = \sigma^2 \Sigma$.

- Additionally, assume $\boldsymbol{\epsilon} \sim N(0, \sigma^2 \Sigma)$
- Put differently, we're imposing the model

$$\boldsymbol{y} \sim N(\boldsymbol{X}\boldsymbol{\beta},\sigma^{2}\boldsymbol{\Sigma})$$

• *y* is multivariate Normal

MLE

Using matrix notation:

Pre-whitening data

- Let $\Sigma = SS^T$ be the *Cholesky decomposition* of Σ
- Let's pre-multiply everything by S^{-1} :
 - $z = W^{-1/2}y$ • $M = W^{-1/2}X$
 - $\blacktriangleright \ \delta = W^{-1/2} \epsilon$
- Our model is now

$$z = Meta + \delta$$

• The OLS estimate of β is

$$(\boldsymbol{M}^T\boldsymbol{M})^{-1}\boldsymbol{M}^T\boldsymbol{z}$$

Some useful notes on GLS

Using
$$\hat{\boldsymbol{\beta}}_{GLS} = (\boldsymbol{X}^T \Sigma^{-1} \boldsymbol{X})^{-1} \boldsymbol{X}^T \Sigma^{-1} \boldsymbol{y}$$
, it turns out that
• $E(\hat{\boldsymbol{\beta}}_{GLS}) = \boldsymbol{\beta}$

•
$$Var(\hat{\boldsymbol{\beta}}_{GLS}) = \sigma^2 (\boldsymbol{X}^T \Sigma^{-1} \boldsymbol{X})^{-1}$$

Some less useful notes on GLS

- Typically we don't really know Σ and have to estimate it too
- A common approach is to parameterize Σ using a small number of parameters
- Comes up a lot for longitudinal and multilevel data

Today's big ideas

Weighted and generalized least squares

■ Suggested reading: Ch. 5