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Today’s Lecture

� Longitudinal data analysis
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Focus on covariance

� We’ve extensively used OLS for the model

y = Xβ + ε

where E(ε) = 0 and Var(ε) = σ2I

� We are now more interested in the case of Var(ε) = σ2V

� WLS and GLS were useful in this setting, but required a
known V matrix
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Longitudinal data

� Data is gathered at multiple time points for each study
participant

� Repeated observations / responses

� Longitudinal data regularly violates the “independent
errors” assumption of OLS

� LDA allows the examination of changes over time (aging
effects) and adjustment for individual differences (subject
effects)
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Some hypothetical data
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Notation

� We observe data yij, xij for subjects i = 1, . . . I at visits
j = 1, . . . , Ji

� Vectors yi and matrices Xi are subject-specific outcomes
and design matrices

� Total number of visits is n =
∑I

i=1 Ji

� For subjects i, let
yi = Xiβ + εi

where Var(εi) = σ2Vi
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Notation

� Overall, we pose the model

y = Xβ + ε

where Var(ε) = σ2V and

V =


V1 0 . . . 0
0 V2 . . . 0
...

...
. . .

0 0 VI


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Covariates

The covariates xi = xij1 . . . xijp can be

� Fixed at the subject level – for instance, sex, race, fixed
treatment effects

� Time varying – age, BMI, smoking status, treatment in a
cross-over design
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Motivation

Why bother with LDA?

� Correct inference

� More efficient estimation of shared effects

� Estimation of subject-level effects / correlation

� The ability to “borrow strength” – use both subject- and
population-level information
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Example dataset

An example dataset comes from the Multicenter AIDS Cohort
Study

� 366 HIV+ individuals

� Observation of CD4 cell count (a measure of disease
progression)

� Between 1 and 11 observations per subject (1888 total
observations)
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Visualizing covariances

Suppose the data consists of three subjects with four data
points each.

� In the model
yi = Xiβ + εi

where Var(εi) = σ2Vi, what are some forms for Vi?
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Approaches to LDA

We’ll consider two main approaches to LDA

� Random effects models, which introduce random subject
effects (i.e. effects coming from a distribution, rather than
from a “true” parametric model)

� Marginal models, which focus on estimating the main
effects and variance matrices but don’t introduce subject
effects
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First problem: uniform correlation

Start with the model where

Vi =


1 ρ . . . ρ

ρ 1 . . . ρ
...

...
. . .

ρ ρ 1


This implies

� var(yij) = σ2

� cov(yij, yij′) = σ2ρ

� cor(yij, yij′) = ρ
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Marginal model

If we assume a uniform correlation structure, the marginal
model is

y = Xβ + ε

where

� Var(ε) = σ2V,

�

Vi =


1 ρ . . . ρ

ρ 1 . . . ρ
...

...
. . .

ρ ρ 1


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Random effects model

A random intercept model with one covariate is given by

yij = β0 + bi + β1xij + εij

where

� bi ∼ N
[
0, τ 2]

� εij ∼ N
[
0, ν2]

Under this model

� var(yij) =

� cov(yij, yij′) =

� cor(yij, yij′) = ρ =
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Relationship between marginal and RI models

The random intercept model implies a correlation structure
equivalent to the mixed model, with

� σ2 = τ 2 + ν2

� ρ = τ 2

τ 2+ν2

(This works with continuous responses, but be careful with
generalized outcomes)
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Partitioning variance

� Whether we look at random effects or marginal modeling,
we have to partition total variability into subject-level
variance and population-level variance

� In a random effects framework, we estimate between and
within subject variance components

� In a marginal model framework, we estimate a within
subject variance and a covariance matrix
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Interpretation of ICC

� The quantity ρ = τ 2

τ 2+ν2 is called the intraclass correlation

� It tells how strongly observations within a subject are
correlated relative to the overall population variance

� Alternatively, the ICC tells what proportion of variability
is within-subject variability
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Pig weight data

� Weight on 48 pigs

� Nine measurements per pig
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Pig weight data
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Pig weight data

� Apparent linear relationship

� High variance across pigs compared to variance within
pigs

� Each pig’s “baseline” is very important for future
observations
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Pig weight data analysis

Using ordinary least squares, we find
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 19.35561 0.46054 42.03 <2e-16 ***
num.weeks 6.20990 0.08184 75.88 <2e-16 ***

Residual standard error: 4.392 on 430 degrees of freedom
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Pig weight data analysis
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Pig weight data analysis

Using a random intercept model, we find
Random effects:
Groups Name Variance Std.Dev.
id.num (Intercept) 15.1418 3.8913
Residual 4.3947 2.0964

Number of obs: 432, groups: id.num, 48

Fixed effects:
Estimate Std. Error t value

(Intercept) 19.35561 0.60311 32.09
num.weeks 6.20990 0.03906 158.97
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Pig weight data analysis
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Next time

� Why do we use random effects rather than creating
subject-level indicator variables and estimating fixed
effects?

� Next time we’ll talk about estimation of random effect and
marginal models

28 of 29



Today’s big ideas

� Longitudinal data analysis

� Uniform correlation models
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