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Today’s Lecture

� Logistic regression / GLMs
I Model framework
I Interpretation
I Estimation
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Linear regression

Course started with the model

yi = β0 + β1xi + εi

where
εi ∼ (0, σ2

ε )

In particular, yi has been continuous throughout the course
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Binary responses

Binary outcomes are common in practice; usually indicate
some event

� Yes vs no

� Transplant vs no transplant

� Death vs no death

3 of 37



Binary responses

How should we deal with binary (0/1) y’s?

� Regression focuses on E(y|x)
� For binary outcomes, we want E(y|x) = p(y = 1|x)
� Does pi = p(y = 1|x) = β0 + β1xi work?
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Linear regression for binary outcome
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What we need for binary outcomes

� Fitted probabilities should be between 0 and 1

� Use a invertible function g : (0, 1)→ (−∞,∞) to link
probabilities to the real line

� Build a model for g(pi) = β0 + β1xi
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Link functions

� Lots of possible link functions: logit, probit,
complimentary log-log

� By far, most common is the logit link:

g(pi) = logit(pi) = log
pi

1− pi

� The inverse link function is also useful:

g−1(z) =
exp(z)

1 + exp(z)
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Logistic regression

Model is now

E(yi|xi) = pi

g(pi) = log
pi

1− pi
= β0 + β1xi

Using the logit link, we have

pi = g−1(β0 + β1xi) =
exp(β0 + β1xi)

1 + exp(β0 + β1xi)
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Parameter interpretation

Suppose we can estimate β0, β1; what do they mean?
For a binary predictor ...
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Parameter interpretation

For a continuous predictor ...
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Parameter estimation

� For linear regression, we used least squares and found that
this corresponded to ML

� Try using maximum likelihood for logistic regression; need
a likelihood ...
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ML for logistic regression

� Assume that [yi|xi] ∼ Bern(pi)

� Density function is p(yi) = pyi
i (1− pi)

1−yi

� As before, use that logit(pi) = β0 + β1xi

� Likelihood is

L(β0, β1;y) =
n∏

i=1

pyi
i (1− pi)

1−yi
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ML for logistic regression

� Log likelihood is easier to work with, but it is typically not
possible to find a closed-form solution

� Iterative algorithms are used instead (Newton-Raphson,
Iteratively Reweighted Least Squares)

� These are implemented for a variety of link functions in R
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Example
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Code

> model = glm(y˜x, family = binomial(link = "logit"), data = data)
> summary(model)

Call:
glm(formula = y ˜ x, family = binomial(link = "logit"), data = data)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.9360 -0.4631 0.1561 0.5564 1.8131

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.1072 0.3357 3.298 0.000974 ***
x 0.8097 0.1664 4.865 1.15e-06 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 129.49 on 99 degrees of freedom
Residual deviance: 73.24 on 98 degrees of freedom
AIC: 77.24

Number of Fisher Scoring iterations: 6

15 of 37



Multiple predictors

� Essentially everything that worked for linear models
works for logistic models:
I Multiple predictors of various types
I Interactions
I Polynomials
I Piecewise, splines
I (Penalization, random effects, Bayesian models)
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Testing in Logistic

� In linear models, many of our inferential procedures
(ANOVA, F tests, ...) were based on RSS

� For logistic regression (and GLMs), we’ll use the
asymptotic Normality of MLEs:

√
n(β̂ − β)→ N [0,V]

with V = (XTWX)−1 and weight matrix W to construct
Wald tests

� Likelihood ratio tests can be used to compare nested
models
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Wald tests

For individual coefficients

� We can use the test statistic

T =
β̂j − βj

ŝe(β̂j)

� This is compared to a Normal distribution, trusting that
the asymptotics have kicked in

� Recall that coefficients are on the logit scale ...
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Confidence intervals

� A confidence interval with coverage (1− α) is given by

βj ± t1−α/2,n−p−1ŝe(β̂j)

� To create a confidence interval for the exp(β̂j), the
estimated odds ratio, exponentiate:

(exp(β̂j − 2ŝe(β̂j)), exp(β̂j + 2ŝe(β̂j)))
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Wald tests for multiple coefficients

� Define H0 : cTβ = cTβ0 or H0 : cTβ = 0

� We can use the test statistic

T =
cTβ̂ − cTβ0

ŝe(cTβ̂)
=

cTβ̂ − cTβ0√
cTVar(β̂)c

� Useful for some tests, looking at fitted values
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Model building

� Can define a model building strategy (at least for nested
models) using these

� Other tools, like AIC and BIC, can compare non-nested
models
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ROC curves

� Forget logistic for a minute

� Suppose you have some test to classifying subjects as
diseased or non-diseased

� You can describe that test using sensitivity P(+|D) and
specificity P(−|D′)

� These values depend on what threshold you use for your
test

22 of 37



Threshold effect on sens, spec
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Threshold effect on sens, spec
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Better tests give better ROCs
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Summarizing ROCs

� Area under the curve is a useful summary of an ROC

� AUC shouldn’t be less than .5; can’t be more than 1

� Bigger AUC indicates better classification

� Useful alternative to AIC, BIC, etc
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Connection with logistic regression

� Your “test” might be µ̂i = p̂(yi = 1|xi)

� You can model this probability using logistic regression
� Cross-validated ROCs are a way to compare the predictive

performance of different models:
I Based on fitted model (from training set) you construct

fitted probabilities µ̂i =
exp(xiβ)

1+exp(xiβ) for subjects in the
validation set

I Validation subjects test “positive” or “negative” based on
their fitted value; compare to the observed value
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Generalizing this approach

Suppose instead of binary data, we have

yi ∼ EF(µi, θ)

where
E(yi|xi) = µi

and
Var(yi|xi) = a(φ)V(xi)

with known variance function V(·) and dispersion parameter φ
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Generalized Linear Model

Model components are the

� Probability distribution

� Link function

� Linear predictor
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Linear regression as a GLM
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Comparing linear and logistic

I Comparing linear, logistic, and Poisson regression models:

Linear Logistic Poisson

Outcome Continuous Binary Count
Distribution Normal Binomia Poissonl
Parameter E(Y) = µ E(Y) = p E(Y) = λ

Range of mean −∞ < µ <∞ 0 < p < 1 0 < λ <∞
Variance σ2 p(1− p) λ

“Natural” Link identity logit log
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Other link functions?
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Other GLMs

Framework holds for any member of the exponential family

� Probability distribution

� Link function

� Linear predictor
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Exponential family distribution

Any distribution whose density can be expressed as

f (y|θ, φ) = exp
(

yθ + b(θ)
a(φ)

+ c(y, φ)
)

where b′(θ) = µ and b′′(θ) = V

� Can take some effort to convert usual density to this form

� Includes Normal, Bern, Poisson, Gamma, Multinomial, ...
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Exponential family examples

Normal:

f (y;µ, σ2) =
1√

2πσ2
exp

(
1

2σ2 (y− µ)
2
)

= exp
(
(yµ− µ2/2)/σ2 − 1

2
(y2/σ2 + log(2πσ2))

)
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Exponential family examples

Bernoulli:

f (y; p) = exp (y log(p) + (1− y) log(1− p))

= exp
(

y log
p

1− p
+ (− log(1− p))

)
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Today’s big ideas

� Logistic regression and GLMs

� Suggested reading: ISLR Ch 4.2 and 4.3
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