Linear Regression Models P8111

Lecture 25

Jeff Goldsmith April 26, 2016

Today's Lecture

- Logistic regression / GLMs
 - Model framework
 - Interpretation
 - ► Estimation

Linear regression

Course started with the model

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

where

$$\epsilon_i \sim (0, \sigma_\epsilon^2)$$

In particular, y_i has been continuous throughout the course

Binary outcomes are common in practice; usually indicate some event

- Yes vs no
- Transplant vs no transplant
- Death vs no death

How should we deal with binary (0/1) *y*'s?

- Regression focuses on E(y|x)
- For binary outcomes, we want E(y|x) = p(y = 1|x)
- Does $p_i = p(y = 1|x) = \beta_0 + \beta_1 x_i$ work?

Linear regression for binary outcome

What we need for binary outcomes

- Fitted probabilities should be between 0 and 1
- Use a invertible function $g: (0,1) \to (-\infty,\infty)$ to *link* probabilities to the real line
- Build a model for $g(p_i) = \beta_0 + \beta_1 x_i$

Link functions

- Lots of possible link functions: logit, probit, complimentary log-log
- By far, most common is the logit link:

$$g(p_i) = logit(p_i) = log \frac{p_i}{1 - p_i}$$

• The inverse link function is also useful:

$$g^{-1}(z) = \frac{\exp(z)}{1 + \exp(z)}$$

Logistic regression

Model is now

$$E(y_i|x_i) = p_i$$

$$g(p_i) = \log \frac{p_i}{1 - p_i} = \beta_0 + \beta_1 x_i$$

Using the logit link, we have

$$p_i = g^{-1}(\beta_0 + \beta_1 x_i) = \frac{\exp(\beta_0 + \beta_1 x_i)}{1 + \exp(\beta_0 + \beta_1 x_i)}$$

Parameter interpretation

Suppose we can estimate β_0, β_1 ; what do they mean? For a binary predictor ...

Parameter interpretation

For a continuous predictor ...

Parameter estimation

- For linear regression, we used least squares and found that this corresponded to ML
- Try using maximum likelihood for logistic regression; need a likelihood ...

ML for logistic regression

- Assume that $[y_i|x_i] \sim Bern(p_i)$
- Density function is $p(y_i) = p_i^{y_i} (1 p_i)^{1-y_i}$
- As before, use that $logit(p_i) = \beta_0 + \beta_1 x_i$
- Likelihood is

$$L(\beta_0, \beta_1; \mathbf{y}) = \prod_{i=1}^n p_i^{\mathbf{y}_i} (1 - p_i)^{1 - \mathbf{y}_i}$$

ML for logistic regression

- Log likelihood is easier to work with, but it is typically not possible to find a closed-form solution
- Iterative algorithms are used instead (Newton-Raphson, Iteratively Reweighted Least Squares)
- These are implemented for a variety of link functions in *R*

Example

Code

```
> model = glm(y~x, family = binomial(link = "logit"), data = data)
> summary(model)
Call:
glm(formula = y ~ x, family = binomial(link = "logit"), data = data)
Deviance Residuals:
   Min 10 Median 30 Max
-1.9360 -0.4631 0.1561 0.5564 1.8131
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.1072 0.3357 3.298 0.000974 ***
        0.8097 0.1664 4.865 1.15e-06 ***
X
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 129.49 on 99 degrees of freedom
Residual deviance: 73.24 on 98 degrees of freedom
AIC: 77.24
Number of Fisher Scoring iterations: 6
```

Multiple predictors

- Essentially everything that worked for linear models works for logistic models:
 - Multiple predictors of various types
 - Interactions
 - Polynomials
 - Piecewise, splines
 - (Penalization, random effects, Bayesian models)

Testing in Logistic

- In linear models, many of our inferential procedures (ANOVA, F tests, ...) were based on RSS
- For logistic regression (and GLMs), we'll use the asymptotic Normality of MLEs:

$$\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \to \mathrm{N}\left[0, V\right]$$

with $V = (X^T W X)^{-1}$ and weight matrix W to construct Wald tests

 Likelihood ratio tests can be used to compare nested models

Wald tests

For individual coefficients

• We can use the test statistic

$$T = \frac{\hat{\beta}_j - \beta_j}{\widehat{se}(\hat{\beta}_j)}$$

- This is compared to a Normal distribution, trusting that the asymptotics have kicked in
- Recall that coefficients are on the logit scale ...

Confidence intervals

• A confidence interval with coverage $(1 - \alpha)$ is given by

$$\beta_j \pm t_{1-\alpha/2,n-p-1}\widehat{se}(\hat{\beta}_j)$$

To create a confidence interval for the exp(β_j), the estimated odds ratio, exponentiate:

$$(\exp(\hat{\beta}_j - 2\widehat{se}(\hat{\beta}_j)), \exp(\hat{\beta}_j + 2\widehat{se}(\hat{\beta}_j)))$$

Wald tests for multiple coefficients

- Define $H_0: c^T \beta = c^T \beta_0$ or $H_0: c^T \beta = 0$
- We can use the test statistic

$$T = \frac{c^{T}\hat{\beta} - c^{T}\beta_{0}}{\hat{se}(c^{T}\hat{\beta})} = \frac{c^{T}\hat{\beta} - c^{T}\beta_{0}}{\sqrt{c^{T}Var(\hat{\beta})c}}$$

Useful for some tests, looking at fitted values

Model building

- Can define a model building strategy (at least for nested models) using these
- Other tools, like AIC and BIC, can compare non-nested models

ROC curves

- Forget logistic for a minute
- Suppose you have some test to classifying subjects as diseased or non-diseased
- You can describe that test using sensitivity *P*(+|*D*) and specificity *P*(−|*D*′)
- These values depend on what threshold you use for your test

Threshold effect on sens, spec

Threshold effect on sens, spec

1 - spec

Better tests give better ROCs

1 - spec

Summarizing ROCs

- Area under the curve is a useful summary of an ROC
- AUC shouldn't be less than .5; can't be more than 1
- Bigger AUC indicates better classification
- Useful alternative to AIC, BIC, etc

Connection with logistic regression

- Your "test" might be $\hat{\mu}_i = \hat{p}(y_i = 1 | \mathbf{x}_i)$
- You can model this probability using logistic regression
- Cross-validated ROCs are a way to compare the predictive performance of different models:
 - ► Based on fitted model (from training set) you construct fitted probabilities $\hat{\mu}_i = \frac{\exp(x_i\beta)}{1+\exp(x_i\beta)}$ for subjects in the validation set
 - Validation subjects test "positive" or "negative" based on their fitted value; compare to the observed value

Generalizing this approach

Suppose instead of binary data, we have

 $y_i \sim EF(\mu_i, \theta)$

where

$$E(y_i|x_i) = \mu_i$$

and

$$Var(y_i|x_i) = a(\phi)V(x_i)$$

with known variance function $V(\cdot)$ and dispersion parameter ϕ

Generalized Linear Model

Model components are the

- Probability distribution
- Link function
- Linear predictor

Linear regression as a GLM

Comparing linear and logistic

Comparing linear, logistic, and Poisson regression models:

	Linear	Logistic	Poisson
Outcome	Continuous	Binary	Count
Distribution	Normal	Binomia	Poissonl
Parameter	$E(Y) = \mu$	E(Y) = p	$E(Y) = \lambda$
Range of mean	$-\infty < \mu < \infty$	0	$0 < \lambda < \infty$
Variance	σ^2	p(1 - p)	λ
"Natural" Link	identity	logit	log

Other link functions?

Other GLMs

Framework holds for any member of the exponential family

- Probability distribution
- Link function
- Linear predictor

Exponential family distribution

Any distribution whose density can be expressed as

$$f(y|\theta,\phi) = \exp\left(\frac{y\theta + b(\theta)}{a(\phi)} + c(y,\phi)\right)$$

where $b'(\theta) = \mu$ and $b''(\theta) = V$

- Can take some effort to convert usual density to this form
- Includes Normal, Bern, Poisson, Gamma, Multinomial, ...

Exponential family examples

Normal:

$$f(y;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{1}{2\sigma^2}(y-\mu)^2\right) \\ = \exp\left((y\mu-\mu^2/2)/\sigma^2 - \frac{1}{2}(y^2/\sigma^2 + \log(2\pi\sigma^2))\right)$$

Exponential family examples

Bernoulli:

$$\begin{array}{lll} f(y;p) & = & \exp{(y\log(p) + (1-y)\log(1-p))} \\ & = & \exp{\left(y\log{\frac{p}{1-p}} + (-\log(1-p))\right)} \end{array} \end{array}$$

Today's big ideas

Logistic regression and GLMs

Suggested reading: ISLR Ch 4.2 and 4.3