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Today’s Lecture

m Logistic regression / GLMs
» Model framework
» Interpretation
» Estimation



Linear regression

Course started with the model

Yi = Bo+ X + €

where
ei ~ (0, a?)

In particular, y; has been continuous throughout the course



Binary responses

Binary outcomes are common in practice; usually indicate
some event

= Yes vs no
m Transplant vs no transplant

m Death vs no death



Binary responses

How should we deal with binary (0/1) y’s?
m Regression focuses on E(y|x)
m For binary outcomes, we want E(y|x) = p(y = 1|x)

m Does p; = p(y = 1|x) = Bo + P1x; work?



Linear regression for binary outcome




What we need for binary outcomes

» Fitted probabilities should be between 0 and 1

m Use a invertible function g : (0,1) — (—o0, 00) to link
probabilities to the real line

m Build a model for g(p;) = Bo + frxi



Link functions

m Lots of possible link functions: logit, probit,
complimentary log-log

m By far, most common is the logit link:

pi
1 _pi

m The inverse link function is also useful:

g(pi) = logit(p;) = log

1y &XP(2)
e = 1+ exp(z)



Logistic regression

Model is now

E(yilx)) = pi
N pi .
glpi) = log— b Bo + Bix;
Using the logit link, we have
-1 exp(Bo + Br1x;)
i = + p1Xxi) =
pi=g& (fo+hixi) = 5 exp(o + Brix)



Parameter interpretation

Suppose we can estimate /3y, 51; what do they mean?
For a binary predictor ...



Parameter interpretation

For a continuous predictor ...



Parameter estimation

m For linear regression, we used least squares and found that
this corresponded to ML

m Try using maximum likelihood for logistic regression; need
a likelihood ...



ML for logistic regression

Density function is p(y;)
m As before, use that logit(p;)
m Likelihood is

507ﬂ17

Assume that [y;|x;] ~ Bern(p;)
=p/(1—p)' ¥

= Bo + B1x;

HPJ

1

—Yi



ML for logistic regression

m Log likelihood is easier to work with, but it is typically not
possible to find a closed-form solution

m Iterative algorithms are used instead (Newton-Raphson,
Iteratively Reweighted Least Squares)

m These are implemented for a variety of link functions in R
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Code

> model = glm(y~™x, family = binomial (link = "logit"), data = data)
> summary (model)

Call:
glm(formula = y ~ x, family = binomial(link = "logit"), data = data)

Deviance Residuals:
Min 10 Median 30 Max
-1.9360 -0.4631 0.1561 0.5564 1.8131

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.1072 0.3357 3.298 0.000974 xx%
X 0.8097 0.1664 4.865 1.15e-06 x*%*

Signif. codes: 0 %*x 0.001 % 0.01 * 0.05 . 0.1 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 129.49 on 99 degrees of freedom

Residual deviance: 73.24 on 98 degrees of freedom

AIC: 77.24

Number of Fisher Scoring iterations: 6



Multiple predictors

m Essentially everything that worked for linear models
works for logistic models:

\4

Multiple predictors of various types
Interactions

Polynomials

Piecewise, splines

(Penalization, random effects, Bayesian models)

vy V. VvV Y



Testing in Logistic

» In linear models, many of our inferential procedures
(ANOVA, F tests, ...) were based on RSS

m For logistic regression (and GLMs), we'll use the
asymptotic Normality of MLEs:

V(B = B) = N[0, V]

with V = (XTWX)~! and weight matrix W to construct
Wald tests

m Likelihood ratio tests can be used to compare nested
models



Wald tests

For individual coefficients

m We can use the test statistic

T ﬁi _Aﬂj
se()

m This is compared to a Normal distribution, trusting that
the asymptotics have kicked in

m Recall that coefficients are on the logit scale ...



Confidence intervals

m A confidence interval with coverage (1 — «) is given by

Bi £ tl—a/Z,n—p—ls/é(Bj)

m To create a confidence interval for the exp(ﬁj), the
estimated odds ratio, exponentiate:

(exp(B; — 25e(3;)), exp(5; + 25¢($3))))



Wald tests for multiple coefficients

m Define Hy: '3 =c"ByorHy: c'B =0

m We can use the test statistic

_ '8 - "By - e '8y
se(c"B) cTVar(B)c

T

m Useful for some tests, looking at fitted values




Model building

» Can define a model building strategy (at least for nested
models) using these

m Other tools, like AIC and BIC, can compare non-nested
models



ROC curves

m Forget logistic for a minute

m Suppose you have some test to classifying subjects as
diseased or non-diseased

m You can describe that test using sensitivity P(+|D) and
specificity P(—|D’)

m These values depend on what threshold you use for your
test



Threshold effect on sens, spec
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Threshold effect on sens,
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Better tests give better ROCs
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Summarizing ROCs

Area under the curve is a useful summary of an ROC
AUC shouldn’t be less than .5; can’t be more than 1

Bigger AUC indicates better classification
m Useful alternative to AIC, BIC, etc



Connection with logistic regression

» Your “test” might be /i, = p(y; = 1|x;)

m You can model this probability using logistic regression

m Cross-validated ROCs are a way to compare the predictive
performance of different models:

» Based on fitted model (from training set) you construct
: iriaa £ exp(x:8)
fitted probabilities /i = 1557 for subjects in the
validation set
» Validation subjects test “positive” or “negative” based on
their fitted value; compare to the observed value
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Generalizing this approach

Suppose instead of binary data, we have

yi ~ EF(p;, 0)
where
E(yilxi) = pi

and
Var(yi|x;) = a(¢)V(x;)

with known variance function V(-) and dispersion parameter ¢



Generalized Linear Model

Model components are the
m Probability distribution
m Link function

» Linear predictor



Linear regression as a GLM



Comparing linear and logistic

» Comparing linear, logistic, and Poisson regression models:

Linear Logistic Poisson
Outcome Continuous Binary Count
Distribution Normal Binomia  Poissonl
Parameter EYY)=p EY)=p EY)=2A\
Rangeof mean —oo<pu<oo 0<p<l 0<A<oo
Variance o? p(1—p) A
“Natural” Link identity logit log
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Other link functions?



Other GLMs

Framework holds for any member of the exponential family
m Probability distribution
» Link function

» Linear predictor



Exponential family distribution

Any distribution whose density can be expressed as

£416,6) = exp (Wj(—(f)(”

+ely, ¢))
where V' (0) = pand V"(0) =V
» Can take some effort to convert usual density to this form

m Includes Normal, Bern, Poisson, Gamma, Multinomial, ...



Exponential family examples

Normal:

— exp (e = 42/2)/0% — 3(47/0% + log2mo?) )



Exponential family examples

Bernoulli:

flyir) = exp(ylog(p) + (1 —y)log(l —p))

= exp <ylog1 fp

T (~log(1 - p)))



Today’s big ideas

m Logistic regression and GLMs

m Suggested reading: ISLR Ch 4.2 and 4.3



