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For regression models with functional responses and scalar predictors, it is common for the number of predictors
to be large. Despite this, few methods for variable selection exist for function-on-scalar models, and none account
for the inherent correlation of residual curves in such models. By expanding the coefficient functions using a
B-spline basis, we pose the function-on-scalar model as a multivariate regression problem. Spline coefficients are
grouped within coefficient function, and group-minimax concave penalty is used for variable selection. We adapt
techniques from generalized least squares to account for residual covariance by “pre-whitening” using an estimate
of the covariance matrix and establish theoretical properties for the resulting estimator. We further develop an
iterative algorithm that alternately updates the spline coefficients and covariance; simulation results indicate that
this iterative algorithm often performs as well as pre-whitening using the true covariance and substantially out-
performs methods that neglect the covariance structure. We apply our method to two-dimensional planar reaching
motions in a study of the effects of stroke severity on motor control and find that our method provides lower
prediction errors than competing methods. Copyright © 2016 John Wiley & Sons, Ltd.
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1 Introduction
Regression models with functional responses and scalar predictors are routinely encountered in practice. These mod-
els face a challenge that also arises for traditional models: how to identify the important predictors among a potentially
large collection. Functional response models face the additional challenges of high dimensionality and residual corre-
lation. There are few methods for variable selection in this class of models, and none of them properly account for the
correlation structure in the residuals. The purpose of this article is to address the current lack of methods for variable
selection that accounts for residual correlation in function-on-scalar regression problems.

Our work is motivated by two-dimensional planar reaching data. As an assessment of upper extremity motor control,
stroke patients and healthy controls made repeated reaching movements from a central point to eight targets arranged
on a circle. The dataset consists of 57 subjects, including 33 patients suffering a unilateral stroke (meaning only
one arm is affected) and 24 healthy controls, and contains motions made with both the dominant and non-dominant
hands to each of the eight targets. Our analytic goal is to explore the effects of the potential predictors of motor control
on these motions and to identify the most essential ones using variable selection. Among the potential predictors,
the Fugl-Meyer score is a quantity that measures the severity of arm motor impairment (Fugl-Meyer et al., 1975).
It ranges from 0 to 66 with smaller values indicating more severe impairment and 66 indicating healthy function.
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Other potentially important predictors include target direction, whether the hand used was the dominant or non-
dominant, and whether the hand used was contralesional (directly affected by the stroke) or ipsilesional (indirectly
affected or unaffected).

Figure 1 shows the observed reaching motions for three subjects: a stroke patient with contralesional dominant hand
in the left column; a stroke patient with contralesional non-dominant hand in the centre column and a heathy control
in the right column. Reaching motions made by contralesional hand display deviation from straight paths from the
starting point to each target; these deviations may be consistent for contralesional dominant or non-dominant hands.
While deviation from straightness is not obvious in the ipsilesional arm, other effects, like over-reach, are observed. The
potential for differential effects of stroke severity on reaching motions indicates the importance of allowing interactions
between predictors of interest.

The observed data are horizontal and vertical coordinates of the hand position for each reaching motion as functions
of time. We construct function-on-scalar regression models for the two outcome functions separately. Given scalar
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Figure 1. Observed reaching motions for three subjects. The top row shows the dominant hand, and the bottom row shows
the non-dominant hand of three subjects. The left column is a subject with a contralesional dominant hand. The centre
column is a subject with a contralesional non-dominant hand. The right column is a healthy control subject. Dashed lines
are the straight paths to the eight targets terminating at the target location.
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predictors xij, i D 1, : : : , n, j D 1, : : : , p and functional responses yi.t/, i D 1, : : : , n, t 2 T , where T is some compact
finite interval in R; the linear function-on-scalar regression model is

yi.t/ D ˇ0.t/C
pX

jD1

xijˇj.t/C �i.t/, i D 1, : : : , n, t 2 T (1)

where ˇj.�/, j D 0, : : : , p are the p C 1 coefficient functions and �i.�/ � .0, †/ is the error function drawn from a
continuous stochastic process with expectation zero and covariance function †.s, t/ D cov.�i.s/, �i.t//, s, t 2 T .

A common model fitting framework for function-on-scalar regression is outlined by Chapter 13 of Ramsay & Silverman
(2005), in which the coefficient functions ˇj.�/ are expanded using some set of basis functions and basis coefficients
are estimated using ordinary least squares. The imposition of quadratic roughness penalties to enforce smoothness of
the estimated coefficient functions is also common. Reiss et al. (2010) developed a fast automatic method for choosing
tuning parameters in this model and accounted for correlated errors using generalized least squares. Goldsmith &
Kitago (2016) develop a Bayesian approach that jointly models coefficient functions and the covariance structure and
applied their methods to the stroke kinematics dataset considered here.

When p is large, many scalar predictors may have no effect on the functional response, and the corresponding
coefficient functions would equal to zero over all time points. In order to accurately identify the important predictors,
we apply variable selection techniques when estimating the coefficient functions in model (1). Because the coefficient
functions are expanded using basis functions, the shape of each coefficient function is determined by a distinct group
of basis coefficients. We therefore apply variable selection at the group level to include or exclude the vector of basis
coefficients. The group lasso, proposed by Yuan & Lin (2006), is an extension of the classic lasso (Tibshirani, 1994)
to the problem of selecting grouped variables. The lasso is known to induce biases in the included variables, so two
alternative penalties, the smoothly clipped absolute deviation (SCAD) penalty (Fan & Li, 2001) and the minimax
concave penalty (MCP) (Zhang, 2010), were proposed. These achieve consistency and asymptotic unbiasedness and
have been extended to grouped variable selection problem (Wang et al., 2007; Breheny & Huang, 2013).

Few approaches that consider variable selection in the context of functional regression models have been proposed
in current literature. Wang et al. (2007) developed a penalized estimation procedure using group SCAD for variable
selection in function-on-scalar regression assuming errors �i.�/ that are uncorrelated over their domain; this assumption
is clearly violated in practice. Barber et al. (2015) presented function-on-scalar LASSO (FS-LASSO), a framework
which extends the group LASSO to function-on-scalar regression; theory is developed for cases in which predictors
are observed over dense or sparse grids. However, the bias for non-zero coefficients introduced by LASSO was not
addressed, and the method does not account for correlation among residual curves. Gertheiss et al. (2013) proposed
a variable selection procedure for generalized scalar-on-function linear regression models, in which the predictors are
in the form of functions and responses are scalar; although they also consider regression models for functional data,
the structure of their models is very different from the one considered here.

The main contribution of this paper is a method for variable selection in function-on-scalar regression that accounts
for residual correction using tools from generalized least squares. We develop theory for this method and demonstrate
its effectiveness in simulations that mimic our real-data application; direct comparisons with the method of Wang
et al. (2007) and Barber et al. (2015) indicate superior performance of our proposed method for variable selection
and prediction.

The rest of the article is organized as follows. In Section 2, we describe an estimation procedure for function-on-
scalar regression models with errors that are uncorrelated over t using grouped variable selection methods. We then
introduce our methods for the estimation of function-on-scalar regression models with correlated errors, including the
development of an iterative method that refines the estimation of the error covariance and the variable selection. Sim-
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ulations that resemble our motivating data examine and compare the numerical performance of competing methods
in Section 3. An application of our method to the reaching motion data is given in Section 4. Finally, we present con-
cluding remarks in Section 5. Our method is implemented in the user-friendly fosr.vs() function in the refund package
(Ciprian et al., 2014), available on CRAN, and code for our simulations is included in the supplementary material.

2 Methodology
2.1 Estimation for models with i.i.d. errors
Suppose ¹�1.�/, : : : , �K.�/º is a set of pre-specified basis functions. The coefficient functions ˇj.�/, j D 0, : : : , p can
be expanded as

ˇj.�/ D

KX
kD1

bjk�k.�/. (2)

Hence, model (1) is expressed as

yi.t/ D
KX

kD1

b0k�k.t/C
pX

jD1

xij

 
KX

kD1

bjk�k.t/

!
C �i.t/. (3)

The problem is thereby reduced to estimating the basis coefficients ¹bjkºjD0,:::,p; kD1,:::,K.

In practice, functions are observed on a discrete grid. For simplicity, we assume that the grid, denoted ¹t1, : : : , tDº, is
shared across subjects. Let Y be the n � D matrix whose rows are vector-valued functional responses; ˆ be the D � K
matrix whose columns correspond to the K basis functions evaluated at ¹t1, : : : , tDº; and B be the .pC 1/ � K matrix
with the jth row being the vector of basis coefficients for ˇj.�/. Then model (3) can be expressed as

Y D XBˆT C E (4)

where X is the n � .pC 1/ design matrix and E is the n � D matrix containing vector-valued error functions.

Model (4) can be posed as a standard linear model in the following way. Let vec.YT/ be the vector formed by
concatenating the rows of Y, and note that vec

�
.XBˆT/T

�
D .X ˝ ˆ/vec.BT/ where ˝ represents the Kronecker

product of two matrices. Then

vec
�
YT
�
D .X ˝ˆ/vec

�
BT
�
C vec

�
ET
�

(5)

and vec.BT/ can be estimated using least squares. An estimate of OB is obtained by rearranging vec
�
OB

T
�

.

To accurately identify the zero coefficient functions, we apply variable selection techniques when estimating vec.BT/ in
model (5). Let Bj be the vector of coefficients associated with the jth coefficient function ˇj.�/, specifically the jth row
of B. Note that the “zeroth” row of B corresponds to the intercept function ˇ0.t/, which we do not penalize. Setting
the entire ˇj.�/ function to 0 is equivalent to setting all the entries of Bj to zero. Therefore, we apply variable selection
techniques at the group level.

Variable selection can be achieved by penalizing the estimates of the coefficients. The general form of a group penalty isPp
jD1 p�,� .jjBjjj/, where p�,� .�/ is the penalty function for the specific method and � and � are the tuning parameters.

Therefore, the penalized estimator is obtained by minimizing

1

2

���vec.YT/ � .X ˝ˆ/vec.BT/
���2 C nD

pX
jD1

p�,� .jjBjjj/. (6)
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We use group MCP to perform variable selection; the penalty has the form

pmcp.jjBjjj/ D

´
�jjBjjj �

jjBjjj
2

2�
if jjBjjj � ��,

1
2
��2 if jjBjjj > ��

where � and � are the tuning parameters. When jjBjjj is small, the MCP penalty behaves exactly as lasso, but as
jjBjjj increases, the amount of penalization is reduced until there is no penalization at all, thereby avoiding bias in the
estimate of large coefficients.

In terms of tuning parameter selection, � is set to be 3 as recommended in Zhang (2010) and � is chosen by
cross-validation. Another parameter to be determined is K, the number of basis functions used in the expansion of
the coefficient functions. In the following implementations of our method in Section 3, a cubic B-spline basis with 10
basis functions was used. However, because we do not explicitly penalize the roughness of the estimated coefficient
functions, the exact choice of K will vary from application to application and should be chosen with care. In Section 4,
we use cross-validation to choose K.

2.2 Estimation for models with correlated errors
The estimation framework discussed in Section 2.1 assumes that errors are independent and identically distributed
over the entire domain and is similar to the framework of Wang et al. (2007). In most cases, however, within-function
errors are correlated. Let † denote the D � D covariance matrix for discretely observed data. For estimation of the
model (4) with correlated errors, we use techniques from generalized least squares. If † is known, one can “pre-white”
both sides of (4) with the lower triangular matrix L obtained by Cholesky decomposition of †, that is, † D LLT, to
construct a new model

Y� D XBˆ�T C E� (7)

where Y� D Y.L�1/T, ˆ� D L�1ˆ and the error E� D E.L�1/T is independent. Similarly, parameters in model (7) can

be estimated by minimizing

1

2

���vec.Y�T/ � .X ˝ˆ�/vec.BT/
���2 C nD

pX
jD1

p�,� .jjBjjj/. (8)

For a given †, the minimizer of (8) can be obtained using existing software by pre-whitening as described; our
implementation is publicly available and uses the grpreg function in the grpreg package (Breheny & Huang, 2013).

The covariance matrix † is unknown in practice, and it is necessary to obtain an estimate O† of † and to use this
estimate to pre-whiten data. To obtain this estimate, we first fit model (5) using ordinary least squares under the
assumption of independence; this provides an unbiased estimate OB of the coefficient matrix B. From this model fit, we
obtain the estimated residual matrix OE D Y � X OBˆT. Using OE, we consider two approaches for estimating †. The first,
which we refer as the raw estimate, is constructed using a method-of-moments approach based on the residual matrix.
The second approach uses functional principal component analysis (Yao et al., 2005). Here, the off-diagonal elements
of the raw covariance are smoothed and an eigendecomposition of the resulting matrix is obtained. Our estimate is

O† D

LX
lD1

O�l O l
O 

T
l C O�

2I (9)

where O 1, : : : , O L are the estimated eigenfunctions over the grid ¹t1, : : : , tDº, O�l, l D 1, 2, : : : , L are the corresponding
eigenvalues, O�2 is the estimated measurement error variance and I is the identity matrix. The truncation level L is
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determined by the cumulative proportion of variability explained by eigenfunctions. This approach separates † into
a smooth covariance over the observed grid and an additional uncorrelated measurement error process. Although we
focus on these methods for estimating †, others that provide consistent estimators can be substituted.

2.3 Oracle properties of generalized group minimax concave
penalty estimator

We now discuss the theoretical properties of the method described in Section 2.2. Without loss of generality, we
assume ˇ0.t/ D 0, 8 t 2 T . Hence, X D .xT

1, : : : , xT
n/

T is an n�p matrix with the ith row being xT
i D .xi1, : : : , xip/. We

also assume the true coefficient functions ˇj.t/ are in the space spanned by the set of basis functions ˆ. Additionally,
we assume the first s groups of coefficients, BC D .BT

1, : : : , BT
s /

T, are non-zero, and the remaining p � s groups
of coefficients, B0 D .BT

sC1, : : : , BT
p/

T, are zero. Let xiC denote the vector associated with BC and xi0 denote the

one associated with B0. Therefore, we have B D
�
BT
C, BT

0

�T
and xT

i D .xT
iC, xT

i0/, where xT
iC D .xi1, : : : , xis/ and

xT
i0 D .xi.sC1/, : : : , xip/. We further assume that the tuning parameter � of the penalty is fixed. The additional conditions

required for the theorems are

1. lim
n!1

1
nD

Pn
iD1.x

T
i ˝ˆ/

T.xT
i ˝ˆ/ is a positive definite matrix;

2. �n ! 0 and
p

n�n !1 as n!1;
3. There exists an estimate O† of † for which each element is

p
n-consistent;

4. † is non-singular.

Then we have the following results.

Theorem 1 (Estimation consistency)
Under Assumptions 1–4, there exists a local minimizer OB of

Q.B/ D
1

2

h
vec.YT/ � .X ˝ˆ/vec.BT/

iT
.In ˝ O†/�1

h
vec.YT/ � .X ˝ˆ/vec.BT/

i

C nD
pX

jD1

p�n,� .jjBjjj/

such that
����vec. OB

T
/ � vec.BT/

���� D Op.n�1=2/.

Theorem 2 (Oracle property)

Under Assumptions 1–4, the
p

n-consistent local minimizer OB D
�
OB

T
C, OB

T
0

�T

satisfies

(1) Sparsity: OB0 D 0, with probability tending to 1;
(2) Asymptotic normality:

p
n
�

vec
�
OB

T
C

�
� vec

�
BT
C

�� D
! N

0
@0,

 
lim

n!1

1

n

nX
iD1

�
xT

iC ˝ˆ
�T
†�1

�
xT

iC ˝ˆ
�!�11A .

The proof of these theorems is provided in Online Supplement.
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2.4 Iterative algorithm for models with correlated errors
The method described in Section 2.2 uses ordinary least squares to estimate basis coefficients and obtains an estimate
O† of the covariance †; this estimate is then used to pre-whiten the data prior to the application of variable selection
techniques. However, re-estimating the covariance after variable selection may give a refined estimate which can, in
turn, be used to pre-whiten the data. This intuition suggests an iterative algorithm:

1. Fit a model using ordinary least squares to obtain an initial estimate OB
.0/

;
2. Compute residuals and obtain an estimate O†.0/ of †;
3. For k > 0, iterate the following steps until convergence:

(a) Pre-whiten using the covariance O†.k�1/;

(b) Minimize (8) to obtain OB
.k/

;

(c) Use OB
.k/

to construct fitted values and residual curves, and use these to construct O†.k/.

Various criteria of convergence can be used to monitor convergence of this iterative algorithm; one possible criterion

is
ˇ̌̌
ˇ
ˇ̌̌
ˇ OB.kC1/ � OB.k/

ˇ̌̌
ˇ
ˇ̌̌
ˇ
2

< ı, which we use in our implementations. This iterative method will be compared with the

one-step approach of Section 2.2 in simulations.

3 Simulation
We conducted simulation studies to examine the properties of the proposed approach. Specifically, we constructed
500 training samples, each consisting of 100 random curves, and 1 test sample containing 1000 random curves. All
curves are generated from the model

yi.t/ D
20X
jD1

xijˇj.t/C �i.t/

where xij
i.i.d.
� N.0, 10/, ˇ1.t/, ˇ2.t/, ˇ3.t/ are non-zero functions, and the remaining coefficient functions are zero.

All functions are observed on an equally spaced grid of length 25. Errors �i.td/ are generated from a multivariate
Gaussian distribution with mean zero and covariance † D GC I, where G is the error covariance and I is the identity
matrix. the non-zero coefficient functions ˇ1.t/, ˇ2.t/ and ˇ3.t/ are derived from the motivating data in the following
way. Focusing on y position curves for reaching motions made to the target at 0 degrees, we estimated motions made
by healthy controls, moderately affected stroke patients and severely affected patients (stroke severity was defined
by thresholding the Fugl-Meyer score). These estimated motions were the non-zero coefficients and are shown in the
middle panel of Figure 2. The error covariance G was constructed using a functional principal component analysis
(FPCA) decomposition of residual curves after subtracting the group-specific means.

Four implementations of our proposed method are considered: one-step approaches as described in Section 2.2
using raw and FPCA-based covariance matrix estimates, and iterative approaches as described in Section 2.4 using
raw and FPCA-based covariance matrix estimates. For the FPCA-based covariance matrix estimate, we used two
different values, 0.5 and 0.99, as the cumulative proportion of variance explained (PVE) threshold to determine L. For
comparison, we include an approach that pre-whitens using true covariance matrix, as well as ordinary least squares,
a variational Bayes method that includes a smoothness penalty (Goldsmith & Kitago, 2016), the FS-LASSO method
that uses group LASSO but does not account for residual correlation or biases due to the LASSO penalty and a group
MCP method that assumes uncorrelated error curves, analogously to Wang et al. (2007).

Copyright © 2016 John Wiley & Sons, Ltd 94 Stat 2016; 5: 88–101
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Figure 2. Estimates of zero functions (left) and non-zero functions (middle) obtained using the iterative approach with FPCA-
based covariance matrix estimate using PVE = 0.99 across all simulated datasets. The true functions are overlaid (bold
curves). The right panel shows both MSE (solid) and squared bias (dashed) as functions of time for all the coefficient
functions.

Table I. True positive (TP) and true negative (TN) rates of estimated coefficient functions, where
FN is false negative and FP is false positive. They are estimated across all the training samples.

TN
FPCTN

TP
TPCFN .ˇ1/

TP
TPCFN .ˇ2/

TP
TPCFN .ˇ3/

FS-LASSO 0.953 0.850 1.000 1.000
MCP assuming independent errors 0.567 1.000 1.000 1.000
One-step with raw matrix 0.370 1.000 1.000 1.000
Iterative with raw matrix 0.813 0.962 1.000 1.000
One-step with FPCA-based matrix (PVE = 0.5) 0.755 0.996 1.000 1.000
Iterative with FPCA-based matrix (PVE = 0.5) 0.779 0.996 1.000 1.000
One-step with FPCA-based matrix (PVE = 0.99) 0.863 0.986 1.000 1.000
Iterative with FPCA-based matrix (PVE = 0.99) 0.915 0.956 1.000 1.000
Pre-whiten with true † 0.913 0.964 1.000 1.000

Table I reports the true positive (TP) and true negative (TN) rates of the estimates of both zero and non-zero coefficient
functions. We define functions estimated to be non-zero as “positive” while functions estimated to be zero as “neg-
ative”. Our iterative approach using an FPCA-based covariance matrix estimate with PVE = 0.99 outperforms most
competing approaches in terms of correctly identifying the zero functions; its performance is comparable with the
approach that uses the true covariance matrix. The approaches using PVE = 0.5 perform less well because the esti-
mate of the covariance matrix omits important structure. Our proposed methods substantially outperform the method
that assumes uncorrelated errors in accurately identifying zero functions. FS-LASSO has the highest true negative
rate but the lowest true positive rate for ˇ1.t/, potentially indicating a tendency to over-shrink coefficients to zero. All
methods are able to identify ˇ2.t/ and ˇ3.t/ as non-zero.

Estimates of zero and non-zero coefficient functions obtained using the iterative algorithm with FPCA-based covariance
matrix estimate using PVE = 0.99 are shown in the left and middle panels of Figure 2, respectively. Because their
coefficients are relatively large, the estimate of ˇ2.�/ and ˇ3.�/ are approximately unbiased owing to the structure of the
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penalty. For ˇ1.�/, coefficients are shrunk toward and sometimes set equal to zero. We show the mean squared error

MSE D E
�
ˇj.t/ � Ǒj.t/

�2
and squared bias E

�
ˇj.t/ �

NǑj.t/
�2

as functions of t in the right panel of Figure 2, where
NǑj.t/ is the average curve across all the simulation datasets. For ˇ1.�/, both the MSE and squared bias curves present
a sinusoidal shape, which is driven by the sinusoidal shape of the coefficient function itself and by the shrinkage to
zero. There is an increasing trend in general as t increases for the MSE of ˇ2.�/ and ˇ3.�/, which is mostly caused
by the increased variability of curves at the end of the distribution as the biases are relatively small. This plot further
emphasizes the lack of bias for large coefficients stemming from the use of the group MCP penalty, especially in the
case of ˇ3.�/.

The left and middle columns of Figure 3 display the root mean integrated squared error (RMISE),rR 1
0

�
ˇj.t/ � Ǒj.t/

�2
dt for zero and non-zero functions, respectively; in the top row, the FPCA-based covariance esti-

mate is based on PVE = 0.99 and in the bottom row based on PVE = 0.5. The iterative approach with FPCA-based
covariance matrix estimate compares favourably to other approaches, reinforcing the results from Table I. Indeed, the

Figure 3. The top row shows the comparison among the algorithms when PVE = 0.99, while the second row shows the
comparison when PVE = 0.5. The three columns show RMISE for zero functions (left) and non-zero functions (middle) and
prediction error (right).
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RMISE of our iterative method is comparable with pre-whitening using the true covariance for both zero and non-zero
functions. Although FS-LASSO is comparable for zero functions, it has substantially higher RMISE for non-zero func-
tions. Prediction errors on the test sample are shown in the right panel of Figure 3. These errors reflect a combination
of RMISEs for zero and non-zero functions and display similar patterns: our proposed methods, in particular when
using the FPCA-based estimate of the covariance, have excellent numerical performance. Although there is a slight
decline in performance when PVE = 0.5, the proposed method still outperforms ordinary least square, FS-LASSO and
the method that assumes uncorrelated errors.

Additional simulations that generate uncorrelated errors are presented in detail in Online Supplement. In this case,
there is no noticeable disadvantage to using our proposed approach, which outperforms competing methods in
prediction error.

4 Application
We now apply our iterative algorithm using the FPCA-based covariance matrix estimate described in Section 2.4 to
our motivating dataset. The X and Y position functions are the outcomes of interest, and potential predictors include
the Fugl-Meyer score, whether the hand was dominant or non-dominant, whether the hand was contralesional or
ipsilesional, target direction (as a categorical predictor) and the interactions between these variables. Goldsmith &
Kitago (2016) modelled X and Y position curves as a bivariate process; the results of that analysis indicated relatively
low correlation between residuals in the X and Y directions. We therefore model X and Y position curves separately,
using the same models and steps.

First, we perform a cross-validation analysis to evaluate the algorithm in terms of prediction error on the motivating
data. Training and test sets are generated in the following way. For each subject and each hand, we randomly select
one motion to each of the eight target directions. These motions are partitioned so that four are in the training set
and four are in the test set. Previous work on this dataset (Goldsmith & Kitago, 2016) indicates little or no correlation
between motions to different targets made by the same subject, and so our training and test sets are approximately
independent even though they contain data from the same subjects. This procedure results in 452 curves in the
training set and 452 curves in the test set; an example is shown in Figure 4.

Figure 4. One training sample (left) and one test sample (middle) generated from the planar reaching data. Highlighted
curves are from one subject and show how each subject contributes to the training and test sets. Violin plots (right) of
cross-validation errors using the variational Bayes approach and iterative algorithm.
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A function-on-scalar regression model is then constructed on the training sample, and prediction errors are obtained
for the test sample. Four predictors of interest, the target direction (a categorical variable with eight levels), Fugl-Meyer
score (a continuous variable), hand used (dominant/non-dominant) and arm affectedness (contralesional/ipsilesional),
are considered in these models. In addition to main effects, all the possible interactions are included to maximize
flexibility and scientific interpretation. Thus, the model has 64 coefficient functions to estimate. Rather than the typical
design that assigns a reference level for each categorical predictor, a constraint is imposed to the construction of design
matrix so that target-specific interpretations are available. This design matrix is equivalent to building the following
model for each target:

y.t/ Dˇ0.t/C ˇ1.t/ � Ips.Non.C ˇ2.t/ � Con.Dom.C ˇ3.t/ � Con.Non.C ˇ4.t/ � Fugl-Meyer

C ˇ5.t/ � Fugl-Meyer � Ips.Non.C ˇ6.t/ � Fugl-Meyer � Con.Dom.

C ˇ7.t/ � Fugl-Meyer � Con.Non.C �.t/

(10)

where we use the ipsilesional (unaffected) dominant hand of a healthy control as the reference ˇ0.t/. Coefficients
ˇ1.t/, ˇ2.t/ and ˇ3.t/ compare ipsilesional non-dominant, contralesional dominant and contralesional non-dominant
to the reference, respectively. The effect of increasing motor impairment in the ipsilesional dominant arm is estimated
by ˇ5.t/, while differences in the effect of increasing motor impairment comparing other groups to baseline are given
by ˇ6.t/, ˇ7.t/ and ˇ8.t/.

The complete procedure described earlier, consisting of generating training and test sets, fitting the full model to the
training set, and producing predictions for the test set, is repeated 100 times. We fit the model using 5, 10, 15 and

Table II. Proportions of 64 coefficient functions being selected, obtained from models with X trajectories
(top) and Y trajectories (bottom).

Target Fugl-Meyer = 66 � Fugl-Meyer = �1
direction Ips.Dom. Ips.Non. Con.Dom. Con.Non. Ips.Dom. Ips.Non. Con.Dom. Con.Non.

0ı 1.00 0.21 0.24 0.35 0.41 0.38 0.58 0.34
45ı 1.00 0.20 0.03 0.15 0.16 0.08 0.46 0.37
90ı 0.31 0.65 0.31 0.33 0.30 0.17 0.23 0.60
135ı 1.00 0.22 0.16 0.24 0.11 0.48 0.64 0.57
180ı 1.00 0.35 0.13 0.40 0.18 0.38 0.48 0.35
225ı 1.00 0.18 0.16 0.33 0.08 0.22 0.45 0.36
270ı 0.83 0.37 0.19 0.34 0.14 0.35 0.52 0.33
315ı 1.00 0.41 0.20 0.33 0.28 0.35 0.57 0.67

Target Fugl-Meyer = 66 � Fugl-Meyer = �1
direction Ips.Dom. Ips.Non. Con.Dom. Con.Non. Ips.Dom. Ips.Non. Con.Dom. Con.Non.

0ı 0.34 0.10 0.14 0.11 0.13 0.18 0.66 0.20
45ı 1.00 0.02 0.02 0.05 0.01 0.20 0.36 0.12
90ı 1.00 0.07 0.16 0.15 0.08 0.21 0.17 0.43
135ı 1.00 0.05 0.22 0.29 0.05 0.40 0.79 0.43
180ı 0.40 0.13 0.11 0.31 0.15 0.25 0.79 0.27
225ı 1.00 0.05 0.03 0.11 0.01 0.12 0.33 0.21
270ı 1.00 0.03 0.15 0.14 0.06 0.24 0.13 0.22
315ı 1.00 0.03 0.22 0.18 0.06 0.36 0.52 0.54
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20 basis functions, and found that K D 15 gave the smallest cross-validated prediction errors although K D 10 and
K D 20 were both very similar. The right panel of Figure 4 presents the prediction errors obtained using our iterative
algorithm with FPCA-based covariance matrix estimate; we compare to the variational Bayes approach (without
variable selection but with a standard second-derivative penalty). Our iterative algorithm decreases mean prediction
error by around 10% (X direction: 163.8 vs. 144.8; Y direction: 143.6 vs. 132.9) compared with the variational
Bayes approach. In addition, the iterative algorithm seems to be more stable than the variational Bayes approach as
it has fewer outliers and lower median prediction error.

We next conduct our analysis without splitting data into training and test sets. The function-on-scalar regression model
is estimated using one motion for each subject and hand to each target with motions drawn randomly for each target
and hand. We repeat this analysis 100 times, and Table II presents the proportion of times selected by the algorithm
for each of the 64 coefficient functions. Each row of Table II corresponds to coefficients ˇ0.t/,ˇ1.t/, : : : , ˇ7.t/ in
model (10) for a specific target. For instance, the value 0.24 in the third entry of the first row indicates that in 24 of
the 100 datasets, there was an estimated difference between contralesional and ipsilesional dominant hands when
reaching to the target at 0ı.

Large numbers in the table suggest consistent non-zero effects or differences in effect across datasets. Targets at 90ı

and 270ı may have zero effects in the X trajectories, because for those targets, the X position is roughly constant
over time. The same is true for targets at 0ı and 180ı for the Y trajectories. The results in Table II indicate relatively
few differences between ipsilesional and contralesional dominant arms for very mild strokes (Fugl-Meyer = 66), and
some differences between the non-dominant arms and the ipsilesional dominant arm. An effect of increasing stroke
severity is relatively rarely found for the ipsilesional arms but, as expected, is much more frequently found for the

Figure 5. Predicted reaching motions for eight subjects with different combinations of Fugl-Meyer Score(66/26), hand used
(dominant/non-dominant) and arm affectedness (contralesional/ipsilesional). Motions to different targets are distinguished
by colours.
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contralesional arms. The conclusions are further reinforced by Figure 5, where the predicted motions of subjects
with different combinations of Fugl-Meyer Score (66/26), hand used (dominant/non-dominant) and arm affectedness
(contralesional/ipsilesional) are presented.

5 Discussion
We proposed a model fitting framework that performs variable selection in the context of function-on-scalar regres-
sion allowing within-function correlation. This work was motivated by two-dimensional planar reaching data gathered
to understand the mechanisms of motor deficit following stroke. We developed an iterative algorithm that alter-
natively estimates the coefficient functions and covariance structure. Our method relies on a reasonable estimate
of the covariance structure, and in our simulations and application, we found that an estimation procedure based
on FPCA works well. Results from the simulation studies demonstrate the effectiveness of our proposed method
in identifying the true zero functions. Indeed, our proposed method has performance comparable with perform-
ing variable selection using the true covariance. The application to the motivating data indicates our proposed
iterative algorithm makes a significant improvement in terms of decreasing prediction errors and identifying true
zero functions.

Future extension of our methodology may take several directions. Quadratic roughness penalties are often applied
to enforce smoothness of the coefficient functions in spline-based estimation frameworks. It would be worthwhile
to incorporate an explicit roughness penalty in addition to the variable selection penalty to reduce sensitivity to
the size of the basis expansion. Motivated by our application (in which repeated motions are made to each target
by each subject), the development of methods that account for subject-specific and target-specific random effects
is necessary.
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