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Abstract 31	

Continuous monitoring of activity using accelerometers and other wearable devices is 32	
revolutionizing the measurement of physical activity by providing objective, unbiased 33	
observation in unprecedented minute-by-minute detail. Accelerometers have already been widely 34	
deployed in studies of healthy aging, recovery of function after heart surgery, and other 35	
outcomes. Commonly, analysis of accelerometer data reduces thousands of data points to a 36	
single summary variable, such as the total activity count, which conceals timing and patterns in 37	
diurnal activity that might shed light on many pressing scientific questions. However, regression 38	
models from functional data analysis (FDA), an area with an established statistical literature, can 39	
leverage the temporal structure inherent in accelerometer data. In this article we describe the 40	
application of such models to analyze data collected during warmer months in New York City 41	
(May to September) from 151 children participating in a Head Start program. The FDA models 42	
reveal several new, meaningful associations that are missed when data are aggregated, including 43	
shifted activity patterns for children of foreign-born mothers and time-specific effects of asthma 44	
on activity. 45	
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1 Intro 47	

Accelerometers have become an appealing alternative to self-report techniques for studying 48	
physical activity in observational studies and clinical trials, largely because of their relative 49	
objectivity. Accelerometers can be worn comfortably and unobtrusively for days at a time. 50	
During observation periods, the devices measure activity through electrical signals that are a 51	
proxy measure for acceleration (Spierer et al. 2011, Trost, McIver, and Pate (2005), Ward et al. 52	
(2005)). "Activity counts" are then devised by summarizing the voltage signals across a short 53	
period known as an epoch to quantify the amount and intensity of activity; one-minute epochs 54	
are common. Thus, accelerometers produce around-the-clock observations of physical activity 55	
and may yield unique insights into the timing and structure of activity during the day. 56	

Despite the richness of accelerometer data, available analyses focus on the total or average 57	
activity count aggregated over hours or days as a single observed measure of physical activity 58	
(Freedson, Pober, and Janz 2005, Kim, Beets, and Welk (2012), Troiano et al. (2008), Trost, 59	
McIver, and Pate (2005)). This strategy implies that all activity counts are equivalent, regardless 60	
of their timing within a day or distribution across days. Understanding patterns of behavior is 61	
essential for the development of effective physical activity interventions; children with differing 62	
patterns of physical activity may require different interventions to increase their overall level of 63	
physical activity (Jago et al. 2010, Lee et al. (2012), Trilk et al. (2012)). The influence of the 64	
built environment and neighborhood disadvantage on physical activity may vary by time of day 65	
and day of the week (weekend vs weekday). Features of the built environment may influence the 66	
frequency and duration of bouts of moderate or vigorous activity and sedentary time (Kimbro, 67	
Brooks-Gunn, and McLanahan 2011). Neighborhood disadvantage may impede physical activity 68	
at night but not during the day. Even if these risk factors do not have a detectable effect on total 69	
activity count, their effects on patterns of physical activity may have important implications for 70	
health and quality of life. Recognition of activity patterns may open the door to effective 71	
interventions to promote physical activity and limit childhood obesity (Kraus et al. 2015). 72	



In parallel to the rising popularity of accelerometers, the statistical subfield of functional data 73	
analysis (FDA) has been under intense methodological and theoretical development. In this 74	
context, "functional" refers to the data structure rather than to, say, patient or cognitive function. 75	
The key concept in FDA is to treat a completely observed trajectory, in this case parameterized 76	
by time, as a single unit of observation instead of considering each minute of each day as a 77	
separate, disconnected data point (Ramsay and Silverman 2005). This framework depends on the 78	
notion of temporal structure and ordering, and thus allows the examination of time-specific 79	
effects and associations. Although FDA is clearly relevant to many open research questions, it 80	
has rarely been described outside the statistical literature. 81	

Our purpose is to articulate the use of regression models with functional responses and scalar 82	
predictors for accelerometer studies. The term"functional response" refers to the complete 83	
temporal trajectory recorded by the accelerometer analyzed as as the dependent variable or 84	
outcome of interest; the term "scalar predictor" refers to any traditional covariate, such as age or 85	
gender, used as a predictor of the activity response trajectory. Such models are the subject of a 86	
growing statistical literature (Guo 2002, Morris and Carroll (2006), Reiss, Huang, and Mennes 87	
(2010), Goldsmith, Zipunnikov, and Schrack (2015)). This article presents an application of 88	
function-on-scalar regression to accelerometer data, emphasizing the interpretation of the models 89	
and estimated coefficients, to demonstrate the usefulness of FDA for uncovering previously 90	
unknown associations. An interactive graphic showing the results of our analysis is available 91	
online, and to encourage readers to try using such models we have made all code used in this 92	
application publicly available. 93	

2 Dataset and original analysis 94	

Our data have been discussed and analyzed previously, and we provide only an overview here; 95	
for more complete details see (Rundle et al. 2009, Lovasi et al. (2011)). 96	

Study participants were recruited from 50 Head Start centers in northern Manhattan, the Bronx, 97	
and Brooklyn, in neighborhoods with high rates of pediatric asthma. After obtaining informed 98	
consent from the enrolling parent and using a study protocol approved by the Institutional 99	
Review Board of the Columbia University Medical Center, we used a survey instrument to 100	
collect data on the child’s age, race, gender, asthma symptoms and other medical conditions, 101	
birth order and family-related factors, and features of the home environment. Field staff 102	
measured the child’s height, weight, and skin-fold thicknesses The staff then attached the 103	
accelerometer to the child’s non-dominant wrist with a hospital band. To allow the child to 104	
become comfortable with the device before it began recording, staff and programmed it to delay 105	
starting data collection until 11:50 pm the first day; it then recorded the child’s physical activity 106	
for six days, 24 hours per day, using 1-minute epochs 107	

Rundle et al. (Rundle et al. 2009), analyzed these accelerometer data using standard techniques, 108	
with the goal of identifying variables associated with physical activity in children. Multiple 109	
linear regression models were used to examine effects of child demographics (sex, age), mother's 110	
demographics (age, birthplace, occupation), behavioral variables (>2hr per day of TV, > 1hr per 111	
day of video games), and season (warmer months May to September or colder months October to 112	
April) on the mean per-minute accelerometer count during awake minutes. A primary focus of 113	
the study was on the association of asthma symptoms with physical activity. 114	



With minor modifications, we reanalyzed the data on activity during the warm months only, 115	
because Rundle had found more variables associated with activity in the warmer months than in 116	
the colder months. That finding and the findings of other investigators that children gain weight 117	
more during summer break than during the school year, indicated a need for improved 118	
understanding of activity patterns during warmer months (Downey and Boughton 2007, 119	
Christodoulos, Flouris, and Tokmakidis (2006), Von Hippel et al. (2007), Wang et al. (2015)). 120	
The results of our re-analysis were quantitatively and qualitatively similar to those of the original 121	
analysis. Briefly, we found that aggregated activity counts as a single outcome were associated 122	
with gender, whether the mother works or attends school, the number of rooms in the home, and 123	
whether the child watches hours of TV per day. Maternal birthplace (United States or elsewhere) 124	
was not significantly associated with average counts, nor were asthma symptoms “before or after 125	
control for the sociodemographic and behavioral correlates." 126	

3 Functional data analysis 127	

We now introduce the conceptual framework for functional data analysis (FDA); see (Sørensen, 128	
Goldsmith, and Sangalli 2013) for a recent review article and (Ramsay and Silverman 2005) for 129	
a book-length treatment of the area. 130	

As noted in the introduction, FDA regards the complete, structured timeseries for a subject as a 131	
single functional data point, often denoted as y"(t). Thus, the data observed for each child i are 132	
indexed by the time of day t, and the temporal structure of the timeseries is incorporated into all 133	
subsequent analyses. Thus accelerometer data lend themselves easily to FDA. 134	

The figure below plots accelerometer data used in our analysis. We focus on children observed in 135	
the warm months and restrict our analysis to the daytime hours (6:00am to midnight). We 136	
average across days, so that y"(t) is the average of activity counts at time t for child i across all 137	
observation days, to avoid a multilevel structure. Finally, we aggregate data into 10-minute 138	
epochs to reduce the computational burden of our analysis. The resulting trajectories are plotted 139	
for all children in the top left panel below, with the population average trajectory emphasized as 140	
a bold curve. The remaining panels show the same data but separate children into groups based 141	
on observed covariates, showing group-specific means again as bold curves. 142	



 143	
Figure 1: Observed accelerometer data for all subjects (faded curves) and group averages (bold curves). In the top left panel, data 144	
are shown in the same color for all subjects; in remaining panels, data are colored according to covariates. 145	

Comparisons of group-specific mean curves suggest that covariate effects are often time-specific. 146	
For example, girls have on average lower activity than boys during daylight hours but equal (or 147	
even higher) activity in the evening. Children who watch ≥ 2 hours of TV have lower activity 148	
than children who watch < 2 hours of TV, but this difference is largely confined to the evening 149	
hours. To better understand these associations, to adjust for possible confounding, and to 150	
establish statistical significance, we make use of regression modeling. 151	

Function-on-scalar regression (FoSR) relate functional responses y"(t) to scalar covariates x" 152	
(e.g. age, sex, asthma diagnosis). As a starting point, the function-on-scalar model that is 153	
analogous to simple linear regression is 154	

y"(t) = β-(t) + β/(t)x" + ϵ"(t). 155	

The coefficients β-(t) and β/(t) are interpreted analogously to coefficients in a simple linear 156	
regression -- the intercept is the expected response in the reference group, and the slope is the 157	
expected change in response for each one unit change in the predictor -- with the exception that 158	
they, like the outcome, are defined for all time points during the day. Similarly, the error term 159	
ϵ"(t) indicates the departure of the observed data from its conditional expectation at each time t. 160	
Errors are assumed to be correlated over time t, so that above-average activity in the morning 161	
may indicate above-average activity in the afternoon, but are independent across subjects i. 162	
Details on the estimation of the FoSR model appear in the Appendix; here we focus on the 163	
interpretation and results of these analyses. 164	

The following property of the FoSR model is useful in the context of accelerometer analyses. 165	
Integrating a curve over t takes the average of that curve: ∫ y"(t) dt = y" is the average activity 166	
observed for subject i. Analogously, ∫ β-(t) dt = β- is the average activity in the reference 167	
group, and ∫ β/(t) dt = β/ is the expected change in the average activity for each one unit 168	
change in the predictor. These values can be compared to the coefficients estimated in a multiple 169	



linear regression for average activity to provide a heuristic check for the validity of results and to 170	
indicate that the FoSR model retains the information in models for aggregate activity. 171	

4 Application of Function-on-Scalar Regression to the Head Start 172	
Study 173	

We use the FoSR model, directly extended from the above formulation to include multiple scalar 174	
covariates, to study the association between activity trajectories and child demographics (sex, 175	
age), mother's demographics (age, birthplace, occupation), behavioral variables (>2hr per day of 176	
TV, > 1hr per day of video games), and asthma symptoms. For context, we also repeat the 177	
Rundle's multiple linear regression analysis, using average activity counts between 6:00am and 178	
midnight (rather than in awake minutes) as the scalar response. The table below shows 179	
coefficient estimates and p-values for the multiple linear regression in the first two columns; they 180	
are comparable to those found in the original publication. The remaining columns show the 181	
integrated coefficient functions and the p-values resulting from a test of the null hypothesis 182	
H-: β(t) = 0 for all t. 183	

A comparison of covariate effects in Table 1 indicates agreement between the multiple linear 184	
regression and the function-on-scalar regression model in terms of the sign and magnitude of 185	
coefficients, and in most cases the statistical significance of the estimates. For example, both 186	
models suggest that girls are less active than boys, and that children who watch < 2 hours of TV 187	
are significantly more active than children who watch ≥ 2 hours. 188	

 Beta, MLR P-value, MLR Beta, FoSR P-value, FoSR 
Intercept 777.145  759.743  
Sex (ref: Male) -80.657 0 -81.921 0.001 
Number of Rooms in the House 19.686 0.05 17.648 0.216 
Mother Works / is in School -62.618 0.002 -56.340 0.008 
Mother Born in the US -1.966 0.938 18.951 0.014 
>2hr TV per day -45.673 0.024 -42.209 0.056 
>1hr Video Games per day -25.719 0.244 -31.926 0.091 
Child age (in months) 1.309 0.319 0.849 0.151 
Child has Asthma -24.365 0.25 -27.908 0.226 
Table 1: Estimated coefficients (“Beta”) and p-values from two analysis strategies. Multiple linear regression (MLR) results are 189	
shown in the first columns; function-on-scalar regression (FoSR) results are shown in the second columns. For the FoSR model, 190	
estimated effects are the integrated coefficient functions and p-values are global tests of significance for the coefficient function. 191	

4.1 Function-on-scalar regression refines understanding of previously known 192	
effects 193	

The results in Table 1 mask the temporal structure of the function-on-scalar regression by 194	
focusing on ∫ β(t) dt. Examining the coefficient functions β(t) illustrates that the effect of 195	
covariates can differ over the course of the day. In the top row of Figure 2, we show the intercept 196	
function β-(t) and the coefficient functions for sex and TV use in the left, middle, and right 197	
panels, respectively (these plots can be compared to the plots in the top row of Figure 1, which 198	



show the observed data for all subjects and the data separated by sex and TV use). Similarly, the 199	
bottom row of Figure 2 shows the coefficient functions for mother's birthpalce, mother's 200	
occupation, and asthma in the left, middle and right panels, and can be compared to the plots in 201	
the bottom row of Figure 1. For each coefficient function, we include pointwise 95% confidence 202	
intervals to indicate the strength of association at each time. 203	

 204	
Figure 2: Estimated coefficient functions in the function-on-scalar regression model (black curves), with pointwise 95% 205	
confidence intervals (blue curves). Panels correspond to the variables used to color the data in Figure 1. 206	

The intercept is the expected activity count trajectory for a child in the reference group; not 207	
surprisingly, the expected activity level is low in the early morning, high and roughly constant 208	
from mid-morning to early evening, and declining in the late evening and night. The coefficient 209	
function for sex indicates that the difference between boys and girls is substantial and consistent 210	
during daytime hours, when girls are less active than boys, but not in the evening. TV watching 211	
has localized effects: children who watch ≥ 2 hours of TV have are less active than others in the 212	
morning and in the evening but not in the afternoon. The inclusion of temporal structure in the 213	
function-on-scalar regression approach thus provides more detailed insights into behavioral 214	
differences than can be detected when the outcome is an overall average of activity, even for 215	
variables with known effects on activity. Lastly, the coefficient for mother's occupation, a binary 216	
variable indicating that the mother works outside the home or is in school, suggests that the 217	
mother’s absence has a significant negative effect on activity in the afternoon and early evening, 218	
but no effect in the morning or later in the evening. 219	

4.2 Function-on-scalar regression identifies new effects 220	

Although the sign and magnitude of aggregate effects in similar for the multiple linear regression 221	
and function-on-scalar regression models, the significance of the effect of the mother having 222	
been born in the United States is quite different. The multiple linear regression suggests that 223	
children of foreign-born mothers and children of mothers born in the United States do not differ 224	
in activity (p-value 0.938), ), but the function-on-scalar regression models indicate that mother’s 225	
birthplace has is indeed associated with children’s physical activity (p-value 0.014). The 226	
coefficient function for this effect, in the left panel below, explains the discrepancy: the children 227	



of mothers born in the United States are less active in the morning and more active in the 228	
evening than children of mothers born elsewhere. Because these differences are offsetting in 229	
aggregate, the multiple linear regression misses the true effect. 230	

A primary hypothesis of this study was that children with asthma have different activity levels 231	
than children without asthma. As Table 1 indicates, the aggregate model found no effect of 232	
asthma on total activity, a conclusion that was reported in (Rundle et al. 2009). A test of the 233	
hypothesis H-: β89:;<8(t) = 0 for all t in the function-on-scalar regression model also fails to 234	
reject the null, but examining the effect over the daytime hours indicates periods of decreased 235	
activity among asthmatic children. At many time points during the day asthma is not associated 236	
with activity, and these times limit the power to reject the preceding null hypothesis; the same 237	
situation often arises in multiple linear regressions when conducting a global F-test of many 238	
coefficients. However, the confidence interval for the coefficient function does not include 0 239	
from 12:00 to 18:00; children with asthma are less active than other children in this time 240	
window. 241	

5 Discussion 242	

Our re-analysis of accelerometer data using function-on-scalar regression has improved our 243	
understanding of physical activity in children in several important ways. The analyses provide 244	
nuanced information about the specific time course of differences in physical activity that were 245	
previously identified more grossly using simple linear regression analyses of total activity count 246	
data. For instance, a deficit in activity has been previously observed with more time spent 247	
watching TV and the mother either working or attending school; in our analysis the time course 248	
of this deficit is evident. More importantly, the FoS analyses identify additional, previously 249	
hidden, associations between physical activity and socio-demographic characteristics – the lower 250	
morning activity of children of mothers born outside the United States – and between physical 251	
activity and health – the dip in activity during the afternoon among children with asthma. 252	

The FoS analyses show that while children of mothers born in the U.S. and children of mothers 253	
born outside the United States have similar total weekly counts of activity, the two groups of 254	
children achieve their activity levels on different schedules. The analyses suggest that 255	
interventions to increase total physical activity among children of mothers born outside the 256	
United States might focus on activity patterns before the noon hour. The analyses do not tell us 257	
why children of mothers born outside the United States are less active in the morning than other 258	
children, but the results at least raise a question we would not otherwise know enough to ask. We 259	
can then undertake qualitative research studies to understand the causes and use that 260	
understanding to formulate interventions to increase activity in the morning hours. 261	

The relative drop in activity in the afternoon among children with asthma as compared to 262	
children without asthma is of particular interest: prior analyses of total physical activity in this 263	
data set showed no difference in activity by asthma status (Rundle et al. 2009). Ground level 264	
ozone levels peak in the summer months, in the early afternoon, and ozone exposure is 265	
associated with increased emergency department (ED) visits and hospitalizations for asthma a 266	
few days after high ozone exposures (Kheirbek et al. 2013, Sheffield et al. (2015)). The dips in 267	
activity observed among children with asthma during the early afternoon may reflect mild 268	
respiratory function impairment or irritation of the respiratory tract associated with ozone 269	
exposure among asthmatics (Gent et al. 2003, Gold et al. (1999), Ierodiakonou et al. (2015), 270	



Khatri et al. (2009)). FoS analyses of accelerometer data may be useful for identifying more 271	
subtle effects of environmental pollutants on behavior among at-risk children. 272	

The novel insights presented in this paper were made through the application of recently 273	
developed statistical models to physical activity trajectories. This analysis strategy is an 274	
alternative (or complement) to standard analyses of accelerometer data that aggregate minutes 275	
into a single summary and, in doing so, obscure potentially important information about the 276	
timing and structure of activity. Several barriers to the broader adoption of such methods exist, 277	
and one goal of this article is to reduce those barriers by building awareness of functional data 278	
approaches and clearly interpreting the results of such analyses. The interpretation of our model 279	
and results is very much aided by the use of interactive graphics, which are available online. To 280	
facilitate the implementation of similar analyses, all code used for this paper and for the 281	
interactive graphic is publicly available in the R statistical computing language. 282	
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